





# GUIA para a SELEÇÃO das MELHORES TÉCNICAS DISPONÍVEIS de VALORIZAÇÃO na REGIÃO do SUDOE

(Espanha, Midi-Pirenéus, Aquitânia, Portugal)

2012







| 1. Introdu  | ção                                            | 2  |
|-------------|------------------------------------------------|----|
| 2. Tipolog  | a de resíduos                                  | 2  |
| 3. Critério | s de seleção de tecnologias de valorização     | 4  |
| 4. Tecnolo  | gias de valorização disponíveis e seus aspetos |    |
| chave       |                                                | 8  |
| 4.1         | . Valorização energética                       | 8  |
| 4.2         | 2. Valorização alimentar                       | 13 |
|             | - Extração                                     | 13 |
|             | - Filtragem                                    | 25 |
|             | - Concentração-secagem                         | 27 |
|             | - Restruturação-texturização                   | 33 |
| 4.3         | 3. Valorização agrícola                        | 34 |
| <b>4.</b> 4 | . Valorização ambiental                        | 34 |







# 1. Introdução

O objetivo deste guia para a seleção das Melhores Tecnologias Disponíveis para a valorização é identificar e difundir tecnologias de tratamento e valorização de subprodutos de aplicação em PMEs de atividades produtivas de transformação de vegetais do SUDOE (Portugal, França: Aquitânia, Midi-Pirenéus e Espanha)

#### Para tal:

- Recolheu-se a informação disponível relacionada com a geração, tratamento e valorização de resíduos procedentes da indústria de transformados vegetais nos territórios participantes e no conjunto do SUDOE.
- Identificaram-se as melhores tecnologias disponíveis para o tratamento e valorização dos resíduos nos âmbitos da obtenção de componentes de interesse para a indústria agroalimentar e da geração energética (criação de uma base de dados disponível em www.proyectovalue.eu)

# 2. Tipologia de resíduos

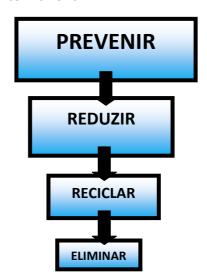
O sector dos transformados vegetais agrupa as empresas que processam matériaprima vegetal mediante qualquer técnica de conservação: esterilização por calor,
congelação, dessecação, refrigeração, atmosferas modificadas... Na análise da
situação da indústria de transformados vegetais de cada uma das zonas da região
SUDOE (Portugal, Aquitânia, Midi-Pirenéus, Espanha) recolheram-se os diferentes
resíduos produzidos. (*Relatório de GERAÇÃO e VALORIZAÇÃO de RESÍDUOS*PROCEDENTES da INDÚSTRIA AGROALIMENTAR, www.proyectovalue.eu).
Seguidamente resume-se a tipologia dos resíduos produzidos com maior impacto
nas diferentes regiões:







| REGIÃO        | SUBSECTOR                               | TIPO DE SUBPRODUTO                   |  |
|---------------|-----------------------------------------|--------------------------------------|--|
|               |                                         | Bagaço de uva                        |  |
|               | Vitivinícola                            | Borra de vinho                       |  |
|               |                                         | Bagaço de uva sem álcool             |  |
|               | Lagares                                 | Águas ruças                          |  |
|               |                                         | Levedura                             |  |
| PORTUGAL      | Sector cervejeiro                       | Malta                                |  |
|               |                                         | Levedura seca                        |  |
|               | Produção de arroz e frutos secos        | Casca de arroz, de amêndoa, de noz   |  |
|               |                                         | Polpa de alfarroba                   |  |
|               | Frutas e hortaliças                     | Tomate                               |  |
|               |                                         | Polpa de cítricos                    |  |
|               | A indústria de conservação e congelação | Restos vegetais (caules, pedúnculos) |  |
| Aquitânia     | de vegetais                             | Matérias-primas rejeitadas: Cereja e |  |
| FRANÇA        | Produtoras de marmeladas sumos,         | kiwi, bem como legumes, milho doce   |  |
|               | néctares e xaropes                      | e cenoura                            |  |
|               | Indústria láctea                        | Soros                                |  |
| Midi-Pirenéus | A indústria de transformação de frutas  | Resíduos da produção de compotas e   |  |
| FRANÇA        | (marmeladas) e legumes                  | marmeladas.                          |  |
|               | - Vitivinícola                          | Bagaço de uva                        |  |
|               |                                         | Subprodutos da transformação         |  |
|               |                                         | (partes não aproveitáveis)           |  |
|               | Indústria de conservas vegetais e de    | Não conformes                        |  |
|               | frutas                                  | Excedentes                           |  |
| ESPANHA       | Indústria de congelados vegetais        | Hortaliças                           |  |
| _             |                                         | Cítricos                             |  |
|               |                                         | Não cítricos                         |  |
|               | Lagares                                 | Águas ruças                          |  |
|               | Vitivinícola                            | Bagaço de vinho                      |  |





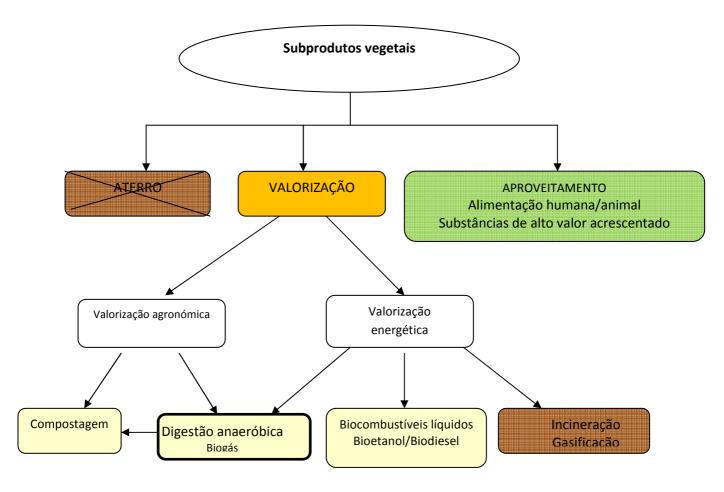

# 3. Critérios de seleção de tecnologias de valorização

#### Pirâmide de hierarquização

A estratégia para uma correta gestão dos resíduos centra-se na prevenção, ouseja, em procurar evitar a geração dos resíduos. Para o conseguir, os esforços devem centrar-se no incremento da eficiência dos processos e nos planos de prevenção de geração de resíduos, vertidos e emissões, através da aplicação de tecnologias de minimização e promovendo a valorização dos subprodutos e promocionando a sua reutilização tanto interna como externa, assim como a reciclagem. Esta estratégia pode representar-se da seguinte maneira:



# Como proceder para uma correta gestão dos subprodutos vegetais gerados?

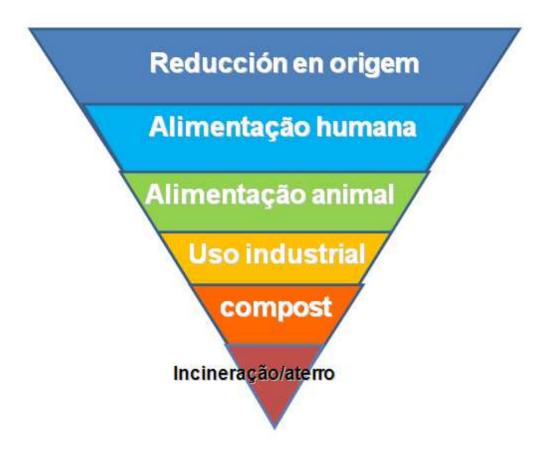

Seguindo a pirámide hierárquica de aproveitamento de resíduos, depois de tentar a redução dos mesmos deveria potenciar-se em primeiro lugar o uso alimentar (humano e na alimentação animal). Seguidamente dar-se-ia prioridade a outros aproveitamentos industriais, como o aproveitamento energético, ou a valorização para uso na agronomia (por exemplo, na compostagem). A última opção é a gestão em aterro sanitário ou a sua incineração.







Este procedimento encontra-se representado no seguinte esquema:










Assim, a hierarquia de valorização a aplicar é a seguinte:



# Como proceder para uma correta seleção da tecnologia de valorização dos subprodutos vegetais gerados?

Em primeiro lugar é necessário conhecer bem o sector gerador de subprodutos:

- tipo de atividade, processo de produção,
- continuidade,
- tipologia das matérias primas processadas,

Neste sentido, a indústria de transformados vegetais carateriza-se por: uma atividade descontínua (em campanhas) e pelo manejo de uma grande variedade de matérias-primas, que requerem diferentes processos de fabricação. Do ponto de vista da rentabilidade das plantas de valorização, é tão importante o volume de resíduos como a sua proximidade das instalações de processamento, devido aos elevados custos económicos e ambientais.







 <u>Tipo de subproduto</u>, ponto de origem do subproduto (processo a que foi submetido), qualidade, estacionalidade da produção, homogeneidade e disponibilidade do material (origem geográfica)

#### Aplicações

- Produto resultante é importante levar a cabo uma caraterização dos subprodutos para conhecer o potencial de aproveitamento e poder assim selecionar o melhor processo de valorização.
- **Mercado potencial** é tão importante conhecer o potencial valorizador do subproduto como a existência ou não de um mercado para o produto obtido. Para tal é interessante levar a cabo uma análise do mercado.
- **Grau de viabilidade**: grau de maturidade da tecnologia.
  - Experimental: desenvolvimento a nível de ensaios de laboratório, protótipo piloto.
  - **Média**: desenvolvimento semi-industrial.
  - **Alta**: instalações a nível industrial, mesmo para outras aplicações.

Dadas as caraterísticas dos subprodutos vegetais que passam a ser matériasprimas dos processos de valorização, é importante que o processo seja o mais universal possível, tendo em consideração:

- **Fatores de influência**: legislação vigente, fatores técnicos (requisitos operacionais), fatores económicos e de mercado.







### 4. Tecnologias disponíveis de valorização e seus aspetos chave

As opções contempladas atualmente para a valorização dos resíduos gerados pela indústria transformadora de vegetais são a) o aproveitamento no próprio processo produtivo, b) a extração de compostos de elevado valor, c) a alimentação animal, d) o adubo orgânico direto, e) compostagem, f) aproveitamento energético (produção de etanol e metano). As opções de valorização e as tecnologias disponíveis encontram-se recolhidas numas fichas técnicas, que por sua vez se encontram disponíveis numa Base de Dados. A informação da Base de Dados permite procurar soluções de valorização para os diferentes subprodutos vegetais com as diversas tecnologias disponíveis. A Base de Dados está disponível na página web do projeto VALUE: <a href="https://www.proyectovalue.eu">www.proyectovalue.eu</a>

Atualmente existem uma série de tecnologias de valorização que em função da maturidade da tecnologia e da problemática existente no que se refere à geração de subprodutos encontram-se implantadas em maior ou menor medida.

Se distinguen las seguintes formas de valorização:

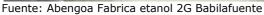
# 4.1. Valorização energética

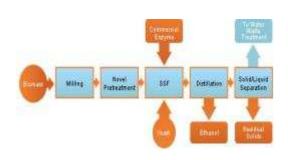
#### **VALORIZAÇÃO**

#### **Bioetanol**

Produz-se pela fermentação dos acúcares contidos na matéria orgânica das plantas. Com este processo obtêm-se o álcool hidratado, com um conteúdo aproximado de 5% de água, que depois de desidratado pode ser utilizado como combustível.

O bioetanol misturado com a gasolina produz um biocombustível de alto poder energético com caraterísticas muito similares à gasolina mas com uma importante redução das emissões contaminantes nos motores de combustão tradicionais. O etanol utiliza-se em misturas com a gasolina, em concentrações de 5 ou 10%, E5 e E10 respetivamente, que não requer quaisquer modificações nos motores atuais.






#### **BIOETANOL**

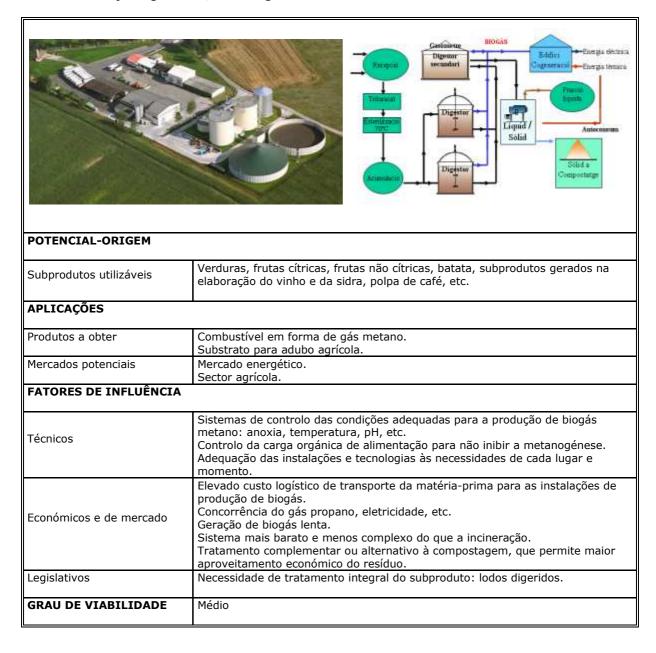






Fuente. Abengoa. Esquema bioetanol 2G

| POTENCIAL-ORIGEM                      |                                                                     |  |
|---------------------------------------|---------------------------------------------------------------------|--|
|                                       | Resíduos líquidos e sólidos da produção de sumos e/ou               |  |
| Subprodutos utilizáveis               | marmeladas, resíduos de tomate, de ervilhas, de vagens, batatas,    |  |
|                                       | cenouras                                                            |  |
| APLICAÇÕES                            |                                                                     |  |
| Produtos a obter                      | Etanol, DDGS                                                        |  |
| Mercados potenciais                   | Alimentação animal, empresas energéticas                            |  |
| FATORES DE INFLUÊNCIA                 |                                                                     |  |
| Técnicos (requisitos<br>operacionais) | Rendimentos, escala das instalações                                 |  |
|                                       | Escala das instalações, disponibilidade de gasolinas adequadas para |  |
| Económicos e de mercado               | a mistura, resistência do sector automóvel à utilização de misturas |  |
|                                       | E10                                                                 |  |
|                                       | Cumprimento de critérios de sustentabilidade em todo o processo     |  |
| Legislativos                          | produtivo, regulação do emprego de misturas E10 e superiores,       |  |
|                                       | desenvolvimento da normativa                                        |  |
| CDALL DE VIARULIDADE                  | Disponibilidade de matéria-prima de baixo custo, tecnologia madura  |  |
| GRAU DE VIABILIDADE                   | e produto com um mercado potencial                                  |  |








#### Biometanização ou digestão anaeróbia

É um processo biológico de degradação da matéria orgánica na ausência de oxigénio que conduz à obtenção de uma mistura de gases conhecida como biogás, que pode ser utilizada como combustível, e um resíduo estabilizado com potencial de valorização agrícola e/ou energética.









#### Combustão

Baseia-se na oxidação completa do material, com a produção de gases quentes e de cinzas, mediante o emprego de ar em quantidade superior à estequiométrica. A tecnologia dominante baseia-se em caldeiras de grelhas, sobretudo em caldeiras de pequena ou média dimensão, incrementando-se o uso de leitos



fluidizados em caldeiras de tamanho médio-grande. Estes gases quentes geram vapor e água quente, ou aquecem o fluido térmico na caldeira com uma eficiência similar à das caldeiras de combustíveis fósseis. Este calor pode ser aproveitado no processo de produção. Nas instalações de geração elétrica o vapor gerado alimenta uma turbina para a geração elétrica, com um índice de eficácia de 20 %-30 %, dependendo da escala.

| POTENCIAL-ORIGEM                   |                                                                                                                                                                                                                                                                                                                                   |  |  |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Subprodutos utilizáveis            | Rebentos de vide, ramas de uva, bagaço de uva, Caroços de azeitona, bagaço oleaginoso, cascas de frutos secos (Amêndoa, avelã, pinhão), palha de cereais, cascas de arroz, resíduos de campo Biomassas com um índice de humidade inferior a 55%.                                                                                  |  |  |
| APLICAÇÕES                         |                                                                                                                                                                                                                                                                                                                                   |  |  |
| Produtos a obter                   | Energia elétrica e/ou vapor, água quente ou fluido térmico quente                                                                                                                                                                                                                                                                 |  |  |
| Mercados potenciais                | Usos térmicos, usos elétricos. Redes de aquecimento central, geração de calor para a indústria, central de geração elétrica.                                                                                                                                                                                                      |  |  |
| FATORES DE INFLUÊNCIA              | FATORES DE INFLUÊNCIA                                                                                                                                                                                                                                                                                                             |  |  |
| Técnicos (requisitos operacionais) | Parâmetros críticos do combustível a valorar: - humidade do combustível;-<br>granulometria - conteúdo em Cl, N, S - conteúdo em cinzas -composição e<br>fusibilidade das cinzas                                                                                                                                                   |  |  |
| Económicos e de mercado            | A geração térmica é competitiva com o gasóleo em quase todos os casos, e em muitos casos com o gás natural. Com o marco de subvenções do RD 661/07 a viabilidade das centrais de geração elétrica é possível apenas em alguns casos (custo do combustível e escala da instalação)                                                 |  |  |
| Legislativos                       | RD 661/2007 regime especial. Legislação meio ambiental, legislação de aparatos a pressão e legalização de instalações.                                                                                                                                                                                                            |  |  |
| GRAU DE VIABILIDADE                | A combustão de biomassa é uma tecnologia fiável disponível comercialmente que se encontra em muitas instalações por todo o mundo. É importante diferenciar entre grandes instalações de biomassa e o consumo em instalações individuais, próprias do sector da pequena indústria e doméstico, orientadas para a geração de calor. |  |  |







#### Gasificação

É o processo pelo qual um combustível sólido se converte maioritariamente num gás combustível mediante a aplicação de calor produzido pela sua combustão parcial. Este gás combustível pode utilizar-se para produzir energia térmica em caldeiras, ou em motores de combustão interna para a geração de eletricidade.



| POTENCIAL-ORIGEM                   |                                                                                                                                                                                                             |  |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Subprodutos utilizáveis            | Requisitos em granulometria, densidade, humidade e fusibilidade de cinzas específicos de cada tecnologia e aplicação. Em geral biomassa de baixa humidade e com uma elevada temperatura de fusão de cinzas. |  |
| APLICAÇÕES                         |                                                                                                                                                                                                             |  |
| Produtos a obter                   | Energia elétrica ou térmica                                                                                                                                                                                 |  |
| Mercados potenciais                | Aplicações térmicas, aplicações elétricas.                                                                                                                                                                  |  |
| FATORES DE INFLUÊN                 | ICIA                                                                                                                                                                                                        |  |
| Técnicos (requisitos operacionais) | Parâmetros críticos do combustível a valorar: humidade do combustível;-<br>granulometria - conteúdo em Cl, N, S - conteúdo em cinzas -composição de<br>cinzas e fusibilidade de cinzas                      |  |
| Económicos e de<br>mercado         | Com o marco de subvenções do RD 661/07 a viabilidade das centrais de geração elétrica só é possível em alguns casos (custo do combustível e escala da instalação)                                           |  |
| Legislativos                       | RD 661/2007 regime especial. Legislação meio ambiental, legislação de aparelhos de pressão e legalização de instalações.                                                                                    |  |
| GRAU DE<br>VIABILIDADE             | A gasificação de biomassa é uma tecnologia pouco madura e que oferece uma fiabilidade limitada.                                                                                                             |  |







# 4.2. Valorização alimentar

#### <u>VALORIZAÇÃO</u> EXTRAÇÃO

#### Líquido-líquido

Baseia-se na distribuição ou repartição de solutos entre duas fases imiscíveis em que o composto e a matriz têm solubilidades diferentes. Na maioria dos casos, uma das fases é um meio aquoso e a outra um dissolvente orgânico, pelo que frequentemente se menciona esta técnica como extração com dissolventes orgânicos ou, simplesmente, extração com dissolventes. A sensibilidade e a eficácia do processo de extração dependem da escolha dos dois



dissolventes imiscíveis. Quando se utiliza uma fase aquosa e um dissolvente orgânico, os compostos mais hidrofílicos permanecerão preferentemente na fase aquosa, e os mais hidrofóbicos passarão ao dissolvente orgânico. Existe uma variante:

**Extração de líquido a pressão (ELP)**: aplica-se pressão durante o processo de extração, o que permite obter uma temperatura superior do ponto de ebulição dos dissolventes. O uso de altas temperaturas aumenta a transferência de massa e as taxas de extração, e reduz o tempo de reação e o consumo de dissolventes orgânicos.







| EXTRAÇÃO LÍQUIDO-LÍQUIDO           |                                                                                                                                                                                                                                                                                                                                    |  |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| POTENCIAL-ORIGEM                   |                                                                                                                                                                                                                                                                                                                                    |  |
| Subprodutos utilizáveis            | Correntes aquosas geradas i) durante o processamento de resíduos agrícolas ou industriais, incluindo os licores escorridos dos sólidos residuais, ou ii) durante o processamento hidrolítico de materiais lignocelulósicos.                                                                                                        |  |
| APLICAÇÕES                         |                                                                                                                                                                                                                                                                                                                                    |  |
| Produtos a obter                   | Compostos fenólicos: flavonóides com efeitos benéficos para a saúde humana, entre os quais se destacam: antialérgico, anti-inflamatório, antiviral, anticancerígeno, antioxidante ( <i>Larrauri, 1996</i> ).                                                                                                                       |  |
| Mercados potenciais                | Produtos de alto valor acrescentado, indústrias alimentar, farmacêutica, química e cosmética, principalmente ( <i>Larrauri, 1994</i> ).                                                                                                                                                                                            |  |
| FATORES DE INFLUÊNCIA              |                                                                                                                                                                                                                                                                                                                                    |  |
| Técnicos (requisitos operacionais) | Necessidade de realização de análises prévias do subproduto vegetal a valorizar para comprovar a idoneidade do produto de valor a extrair.  A estacionalidade na geração dos subprodutos deve considerar-se no dimensionamento das linhas de processamento e no desenho de alternativas diferentes em função do volume disponível. |  |
| Económicos e de mercado            | Limitado a correntes aquosas. Custos de tratamento e extração muito elevados, e preço do produto no mercado também elevado em muitos casos. Necessidade de reducir os custos de secagem. A valorização integral das frações pode possibilitar a rentabilidade dos processos.                                                       |  |
| Legislativos                       | Em função do dissolvente utilizado. Necessidade de tratamento integral do subprodutos: resíduos da extração.                                                                                                                                                                                                                       |  |
| GRAU DE VIABILIDADE                | Médio, baixo custo de investimento, limitado a correntes aquosas.<br>Nem toda a parte dos subprodutos vegetais é valorizável.                                                                                                                                                                                                      |  |







#### Sólido-líquido

A partir de amostras sólidas com dissolventes, geralmente conhecido como lixiviação, é um método muito utilizado na separação de compostos antioxidantes a partir de resíduos sólidos. Requer a extração com dissolventes convencionais e a posterior eliminação do dissolvente para obter um extrato concentrado. Os dissolventes mais utilizados



são a água acidificada, etanol e metanol. A extração a esta pequena escala apresenta interesse para a caraterização dos compostos do material em estudo.

| POTENCIAL-ORIGEM                   |                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Subprodutos utilizáveis            | Resíduos vegetais sólidos                                                                                                                                                                                                                                                                                                                                                                                                |  |
| APLICAÇÕES                         |                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Produtos a obter                   | Compostos antioxidantes                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Mercados potenciais                | Extração de compostos de alto valor acrescentado para enriquecimento de produtos alimentares                                                                                                                                                                                                                                                                                                                             |  |
| FATORES DE INFLUÊN                 | ICIA                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Técnicos (requisitos operacionais) | Utilização de dissolventes adecuados para a obtenção de bons rendimentos de extração. Necessidade de realização de análises prévias do subproduto vegetal a valorizar para comprovar a idoneidade do produto de valor a extrair. A estacionalidade na geração dos subprodutos deve considerar-se no dimensionamiento das linhas de processamento e no desenho de alternativas diferentes em função do volume disponível. |  |
| Económicos e de<br>mercado         | Extração por microondas e ultra-sons: os tempos de extração são menores, com menor consumo de energia e a geração de uma menor quantidade de resíduos.                                                                                                                                                                                                                                                                   |  |
| Legislativos                       | Em função do dissolvente a utilizar. Necessidade de tratamento integral do subproduto: resíduo da extração.                                                                                                                                                                                                                                                                                                              |  |
| GRAU DE<br>VIABILIDADE             | Médio, estando a metodología bastante desenvolvida. Nem toda a parte dos subprodutos vegetais é valorizável.                                                                                                                                                                                                                                                                                                             |  |





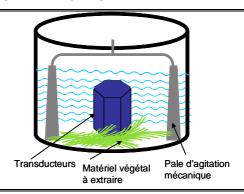


A nível industrial utilizam-se equipamentos de extração descontínua e contínua com dissolventes convencionais.

Extração assistida por microondas: proporciona técnicas seletivas e rápidas, mediante as quais se obtêm recuperações melhores ou similares às obtidas nos processos de extração convencionais, menor consumo de energia, menores volumes de dissolventes, menor toxicidade (em ocasiões) dos dissolventes utilizados e, de um modo geral, menor quantidade de resíduos. A extração produz-se ao aquecer o interior e o exterior da matriz sólida, realizada por impulsos de microondas. Deste modo forma-se um gradiente térmico, o que leva a uma extração dos compostos de interesse de manera mais eficiente e seletiva.

Extração assistida por ultra-sons (sonicação), consiste na geração de cavitação através das ondas sonoras num meio líquido, gerando compressão e descompressão. As fibras vegetais são membranas distendidas, células rotas, partículas resistentes à abrasão que permitem uma transferência quase instantânea de compostos de interesse no dissolvente.

Esta técnica permite reducir o tempo de extração ao produzir-se um incremento na pressão, que favorece a penetração e o transporte dos compostos, e um incremento da temperatura que aumenta a solubilidade e favorece a difusividade.








#### EXTRAÇÃO ASSISTIDA POR ULTRA-SONS (SONICAÇÃO)





| POI | FEN | CT | \ I _ | <b>∩</b> D | TCI | EM |
|-----|-----|----|-------|------------|-----|----|

Subprodutos utilizáveis

Todos os resíduos vegetais sólidos (maçãs, kiwi, cerejas, passas, milho doce); no entanto, o volumen de líquido tratado é mais importante, deveno evitar-se as evitar matérias-primas líquidas, assim como matérias que não possam ser filtradas.

Relação entre o grau de filtragem e a concentração recomendada

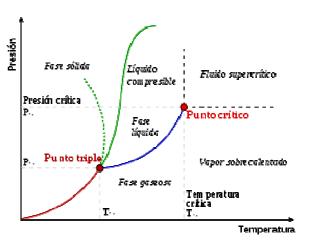
#### **APLICAÇÕES**

| Produtos a obter | Pectinas, extratos polifenólicos, colorantes, fibras e extratos aromáticos |
|------------------|----------------------------------------------------------------------------|
|                  |                                                                            |

Mercados potenciais Indústria alimentar, cosmética, alimentação animal

#### **FATORES DE INFLUÊNCIA**

| Técnicos (requisitos operacionais) | necessária para obter um extrato sólido mais estável<br>Possibilidade de uma trituração por cima da extração<br>Influência na operação da relação de tamanho das partículas de<br>líquido/sólido_(L/S>10) |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Económicos e de mercado            | Poupança de tempo em comparação com outras técnicas de extração (por lotes, por exemplo)                                                                                                                  |
| Legislativos                       | Possível interesse por parte de todos os sectores de atividade.<br>Procedimiento aplicável aos produtos alimentares                                                                                       |
| GRAU DE VIABILIDADE                | Experimental                                                                                                                                                                                              |








#### Fluídos supercríticos

Consiste modificação na do poder dissolvente dos fluidos estado supercrítico (uma substância que se encontre em condições de pressão e de temperatura superiores ao seu ponto crítico: estado em que as densidades do líquido do vapor são iguais, normalmente no caso de CO<sub>2</sub>). Os fluidos neste estado favorecem a sua penetração em diferentes matrizes, e portanto a



solubilização dos solutos. Empregam-se co-solventes para melhorar o poder de extração. A extração com fluidos supercríticos (SFE) é uma técnica que utiliza um dissolvente em condições supercríticas. Constitui uma boa alternativa para a extração e fracionamento de óleos vegetais.

| POTENCIAL-ORIGEM                   |                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Subprodutos utilizáveis            | Subprodutos do tomate, cítricos, frutas, casca de banana                                                                                                                                                                                                                                                                                                                                                        |  |
| APLICAÇÕES                         |                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Produtos a obter                   | Extração de lípidos, óleos essenciais, carotenóides. Dificuldade para a extração de compostos polares e iónicos. Muitos compostos ativos de plantas como os fenóis, alcalóides e compostos glicosídicos são pouco solúveis em CO2 e portanto não são extraíveis (Hamburger e couve, 2004). Substâncias colorantes e pigmentos (carotenóides como o licopeno, etc.), bioproteínas, óleos essenciais e vitaminas. |  |
| Mercados potenciais                | Extração de compostos de elevado valor acrescentado dirigidos a produtos de alto valor acrescentado capaz de compensar o seu custo                                                                                                                                                                                                                                                                              |  |
| FATORES DE INFLUÊNC                | CIA                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Técnicos (requisitos operacionais) | Custo elevado dos equipamentos, embora a longo prazo se consiga um menor consumo de energia. Os óleos são de melhor qualidade                                                                                                                                                                                                                                                                                   |  |
| Económicos e de<br>mercado         | Custos de tratamento e extração muito elevados.                                                                                                                                                                                                                                                                                                                                                                 |  |
| Legislativos                       | Permitido o emprego de CO2 como dissolvente de extração                                                                                                                                                                                                                                                                                                                                                         |  |
| GRAU DE VIABILIDADE                | Baixo, debido ao custo do investimento                                                                                                                                                                                                                                                                                                                                                                          |  |







#### Extração por lotes: Extrator Tournaire

Utiliza os fenómenos de hidratação e transferência por difusão para extrair os compostos de interesse. O sistema está equipado com um controlo eletrónico pneumático. O aquecimento indireto é feito por condução, e a câmara está equipada com uma camisa conectada a uma rede de vapor produzido por uma caldeira que aquece o ambiente. O sistema está equipado com uma turbina de agitação turbulenta, adaptável a diferentes alturas e velocidades da hélice para homogeneizar a amostra durante a extração. Uma etapa de filtragem e concentração do extracto é frequentemente necessária depois da fase de extração, e, eventualmente, aplica-se um processo de liofilização para a obtenção do extracto em pó. É possível a recuperação dos poços.

| POTENCIAL-ORIGEM                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Subprodutos<br>utilizáveis            | Todos os resíduos vegetais sólidos (maçãs, kiwi, cerejas, ameixas secas, milho doce)                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| APLICAÇÕES                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Produtos a obter                      | Extração dos compostos de interesse (alto conteúdo em fibra insolúvel)                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Mercados potenciais                   | Indústria alimentar, cosmética, alimentação animal                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| FATORES DE INFLUÊN                    | ICIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Técnicos (requisitos<br>operacionais) | Influência do tamanho das partículas: a eficiencia da extração pelo aumento da maceração e o tamanho das partículas diminui. NO entanto, em alguns casos demasiado pó fino pode causar problemas durante a filtragem.  Definir a relação ótima entre a quantidade de matéria seca e o volume de extração por solvente. A maior proporção de sólido / líquido é baixa para que a transferência seja efetiva  Agitação , a velocidade de agitação num misturador tem um influência significativa no rendimento de extração |  |
| Económicos e de<br>mercado            | Necessidade de concentrar o extrato conseguido                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Legislativos                          | Procedimento aplicable aos alimentos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| GRAU DE<br>VIABILIDADE                | Média                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |







#### Extração por digestão com sulfito reativo

Esta tecnologia baseia-se na digestão da matéria-prima numa solução que contém sais de sódio do ácido sulfuroso, como sulfito ou bissulfito para a obtenção de celulose. Este processo ocorre num ambiente ácido, e nestas condições dissolve-se a lignina, hemicelulose e outras substâncias derivadas da celulose. A polpa resultante no final do processo carateriza-se por apresentar uma grande pureza, elevados níveis de alfa-celulose e uma distribuição molecular uniforme. Este processo pode realizar-se utilizando metabissulfito de sódio ou sulfito de sódio como agente digestivo. De acordo com os resultados obtidos se pode concluir que a polpa final pode tener numerosas aplicações, entre as quais: a aplicação na produção de papel e outros compostos absorventes das águas residuais e matérias primas para derivados da celulosa.

#### Extração e purificação de açúcares

Tecnologia para a preparação de xaropes de açúcar com elevado conteúdo em frutose, a partir de produtos diferentes aos dos cultivos de açúcar, vegetais ricos em amido e/ou insulina.

O processo implica a produção de um sumo doce clarificado e desmineralizado. O sumo bruto obteido mediante moagem ou prensagem por filtragem, é sobmetido aucessivamente aos seguintes passos: a uma enzima pectolítica, a uma centrifugação a 5.000g, a uma membrana de ultra-filtragem (pressão 7bar), e finalmente a uma eletrodiálise.

O sumo é posteriormente clarificado e desmineralizado para obter por hidrólisise enzimática de sacarose uma primeira farcção de frutose e outra de glucose. Depois da separação destas duas frações, a glucose isomeriza-se em frutose, e constitui-se como a segunda fração de frutose. A cromatografia por resinas de intercâmbio iónico pode retirar, pelo menos parcialmente, o sorbitol que está presente de forma natural no material vegetal original das diferentes frações.

As frações de frutose combinam-se para producir um xarope de açúcar rico em frutose (> 95 da MS). Este xarope é submetido a um tratamento final constituído







por uma esmineralização por cromatografia de resinas de intercâmbio iónico, um tratamento com carvão ativo e uma etapa de concentração por evaporação em vácuo e a baixa temperatura.

| EXTRAÇÃO E PURIFICAÇÃO DE AÇÚCARES |                                                                                                                                                                                                                              |  |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ORIGEM POTENCIA                    | L .                                                                                                                                                                                                                          |  |
| Subprodutos<br>utilizáveis         | Sumo de maçã e de pêssego desclassificados: uvas, nectarinas, kiwi, melão                                                                                                                                                    |  |
| APLICAÇÕES                         |                                                                                                                                                                                                                              |  |
| Produtos obtidos                   | A frutose obtida no processo operativo e os fruto-oligossacáridos (em desenvolvimento) a partir das frutas. Estes produtos têm um poder edulcorante que supera o dos açúcares extraídos da beterraba açucareira ou do amido. |  |
| Mercados potenciais                | Industrias agroalimentares                                                                                                                                                                                                   |  |
| FATORES DE INFLUÊNCIA              |                                                                                                                                                                                                                              |  |
| Parâmetros técnicos                | Método a adaptar em função das diferentes espécies de fruta                                                                                                                                                                  |  |
| Económicos                         | Alto valor do produto final obtido                                                                                                                                                                                           |  |
| Legislativos                       | Esta tecnologia pode ser promovida pelas políticas de saúde pública e regulações orientadas a limitar o conteúo de açúcar nas bebidas ou alimentos preparados                                                                |  |
| VIABILIDADE                        | Média                                                                                                                                                                                                                        |  |



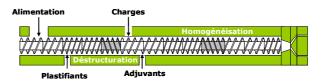




#### Hidrofusão por microondas e gravidade (HMG)

Esta técnica de extração é uma combinação entre o aquecimento por meio de microondas de gravidade e a pressão atmosférica. A hidrofusão é aplicada pelo aquecimento do resíduo por ação do microondas sem o uso de dissolventes; o óleo essencial é recolhido num recipiente por gravidade depois da condensação do gás. Esta metodologia de extração da HMG apresenta muitas vantagens sobre as técnicas mais convencionais, com um menor costo de operação.

| POTENCIAL-ORIGEM        |                                                         |  |
|-------------------------|---------------------------------------------------------|--|
| Subprodutos utilizáveis | Cascas de cítricos                                      |  |
| APLICAÇÕES              |                                                         |  |
| Produtos a obter        | Extrações de óleos essenciais                           |  |
| Mercados potenciais     | Indústria alimentar e farmacéutica                      |  |
| FATORES DE INFLUÊNCIA   |                                                         |  |
|                         | Devem estudar-se as condições experimentais de extração |  |
| Técnicos                | para cada substância antes do inicio de uma operação    |  |
|                         | industrial.                                             |  |
| Legislativos            | Devem estudar-se os níveis de contaminação para cada    |  |
| Legislativos            | substância antes do inicio de uma operação industrial.  |  |
| GRAU DE VIABILIDADE     | Experimental                                            |  |








#### Extrusão (BI-VIS)

Dependendo da configuração escolhida para esta tecnologia, o reator-extrator de duplo fuso pode estar composto por: transportadora ou bomba de parafuso, um moinho ou trituradora, um misturador ou batedora, un reator químico sob pressão,



Déstructuration par extrusion bi-vis

um extrator líquido/sólido, um separador e um secador. No caso da extração por extrusão de duplo parafuso, esta tecnologia pode conseguir, de manera contínua e controlada, todas as operações das unidades utilizadas nos processos de extração líquido-sólido: o transporte, contacto líquidos e sólidos, mistura e amassado, reação química (hidratação, hidrólise), compressão e extensão, a extração e separação sólido-líquido por filtragem e prensagem. Estas operações utilizam-se para isolar um ou mais componentes da matéria vegetal, e à preservação de outros para seu processamento e posterior separação.

| ORIGEM POTENCIA            | ORIGEM POTENCIAL                                                                                                                                                                                                              |  |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Subprodutos<br>utilizáveis | Matérias vegetais de plantas selecionadas com uma adaptação das condições de funcionamento baseada na relação fibras extraíveis. Maçãs, kiwi, cerejas, ameixas passas, milho doce                                             |  |
| APLICAÇÕES                 |                                                                                                                                                                                                                               |  |
| Produtos obtidos           | Extratos e produtos de fibra não estruturados                                                                                                                                                                                 |  |
| Mercados<br>potenciais     | Cosmética, industrias alimentares, materiais agrícolas, embalagem                                                                                                                                                             |  |
| FATORES DE INFLUÊNCIA      |                                                                                                                                                                                                                               |  |
| Parâmetros<br>técnicos     | Tamanho das partículas de matéria-prima (controlado para a sua introdução na máquina extrusora) relação fibra / extraível (uma proporção de fibras é necessária para o correto funcionamento da extração de líquido / sólido) |  |
| Económicos                 | Disponibilidade de novos extratos                                                                                                                                                                                             |  |
| Legislativos               | Os extratos devem pasar as provas de segurança com o fim de cumprir com os critérios legais da indústria farmacêutica e cosmética                                                                                             |  |
| VIABILIDADE                | Experimental                                                                                                                                                                                                                  |  |







#### Moagem por pulverizador micronizador

A tecnologia consiste na moagem fina e crivagem do coração das espigas de milho. A porção lenhosa do coração da espiga utiliza-se como componente de um produto de grande dureza, alta densidade, alta fluidez e com uma alta capacidade de absorção.

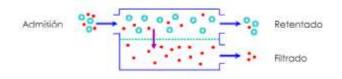
A parte exterior e a medula do caule utilizam-se para obter produtos mais tenros, com uma densidade relativamente baixa, e possuem uma capacidade de absorção muito elevada. O tamanho de partículas dos produtos pode variar de vários mm a várias centenas de micras, dependendo das aplicações previstas.

| ORIGEM POTENCIAL        |                                                                                                                                                                                                                                                                                        |  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Subprodutos utilizáveis | Coração de espigas de milho, cascas de noz                                                                                                                                                                                                                                             |  |
| APLICAÇÕES              |                                                                                                                                                                                                                                                                                        |  |
| Produtos obtidos        | Abrasivos, absorventes, cama para os animais, ingredientes de origem animal ou vegetal para a indústria farmacêutica, agroquímica ou produtos de limpeza, material de base para diversos produtos (cosméticos, resinas, plásticos, adesivos, tintas), aditivos para areias de fundição |  |
| Mercados potenciais     | Indústria química, tratamento farmacológico, mecânica da superfície.<br>Distribuição especializada para camas dos animais.                                                                                                                                                             |  |
| FATORES DE INFLUÊNCIA   |                                                                                                                                                                                                                                                                                        |  |
| Parâmetros técnicos     | Granulometria: centenas de micras até vários mm, segundo a aplicação.                                                                                                                                                                                                                  |  |
| Económicos              | Custo de transporte, estabelecimento de unidades em grandes áreas de produção de milho. Consumo de energia do processo.                                                                                                                                                                |  |
| Legislativos            | O processo gera pó inflamável e um elevado consumo energético.<br>ICPE (Instalações catalogadas para a proteção do meio ambiente)                                                                                                                                                      |  |
| VIABILIDADE             | Processo operativo comercializado pela empresa Eurocob e pela sua filial Prodema. Produção de 35.000Tm/anuais de produtos terminados                                                                                                                                                   |  |








#### <u>FILTRAGEM</u>

#### Filtragem por membranas-tangencial

Processo de filtragem por membrana porosa semi-permeável sob gradiente de pressão, ideal para o fracionamento de solutos contidos em fases liquidas. Dependendo do tamanho do poro classifica-se em Ultrafiltração (UF), Nanofiltração (NF) ou Osmose Inversa (OI).

As vantagens em relação às tecnologias de filtragem em profundidade ou convencionais é a alta eficiência devido à superficie de filtragem e maior rendimento (menor colmatação).

As denominadas membranas de terceira geração são as mais utilizadas na atualidade. Estão compostas por materiais cerâmicos porosos de natureza mineral de óxido de alumínio.

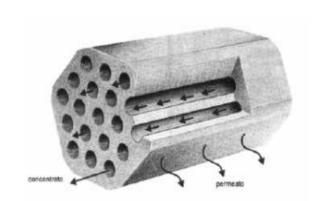






Por membrana cerâmica: Trata-se de uma combinação de tecnologias de filtragem por membrana, digestão anaeróbica e purificação cromatográfica em polímero absorvente, orientado para a produção de biogás e a recuperação de compostos fenólicos antioxidantes e uma elevada percentagem de água purificada (testada experimentalmente em efluentes da indústria do azeite). O permeado extrai-se através da superfície da








membrana ativa de uma forma contínua (ultrafiltração, nanofiltração e osmose inversa) com membranas poliméricas esperais e o extrato é submetido a secagem por atomização.

# FILTRATION TANGENTIELLE PAR MEMBRANES CÉRAMIQUES





| POTENCIAL-ORIGEM                   |                                                                                                                                                                                   |  |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Subprodutos utilizáveis            | Os efluentes de lagares (Olive Oil Mill Waste Waters - OMWW), muito ricos em compostos fenólicos, principais responsáveis pela sua fitotoxicidade e difícil degradação biológica. |  |
| APLICAÇÕES                         |                                                                                                                                                                                   |  |
| Produtos a obter                   | Recuperação de compostos fenólicos antioxidantes e elevada percentagem de água purificada.                                                                                        |  |
| Mercados potenciais                | Facilitaria a eliminação dos resíduos, compostos muito interesantes para as indústrias alimentar, famacêutica ou cosmética.                                                       |  |
| FATORES DE INFLUÊNCIA              |                                                                                                                                                                                   |  |
| Técnicos (requisitos operacionais) | O processo foi testado à escala de laboratório e em ensaios piloto<br>pela Indústria Oleario Biagio Mataluni sur de Italia                                                        |  |
| Económicos e de mercado            | Nível preliminar de desenvolvimento tecnológico. Solução para o tratamento de águas residuais em lagares                                                                          |  |
| Legislativos                       | Legislação relativa ao tratamento de efluentes                                                                                                                                    |  |
| GRAU DE VIABILIDADE                | Em fase de experimentação                                                                                                                                                         |  |







#### CONCENTRAÇÃO-SECAGEM

Concentração de extratos líquidos obtidos em processos de extração-Secagem (microondas, forno).

#### **Secagem convencional:**

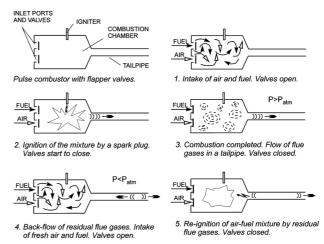
Baseiam-se na aplicação de ar quente. No entanto, apesar das amplas vantagens da desidratação no alargamento da vida útil dos alimentos, as facilidades no processamento (redução de volume, redução do custo de armazenamento,...) e da sua relativa simplicidade, apresentam algumas limitações, como os elevados requisitos energéticos, que aumentam os custos de operação e têm um maior impacto ambiental, assim como tempos mais longos de processamento e elevadas temperaturas, que podem induzir importantes modificações nas caraterísticas físicas, químicas, organolépticas (textura, sabor, aroma e cor) e nutricionais conduzindo a uma perda na qualidade e valor do produto final.

A perda de compostos voláteis ocorre inevitavelmente durante a secagem. Estes compostos voláteis são vaporizados e perdidos junto com o vapor de água desde que o produto é exposto a altas temperaturas durante largos períodos (*Mascan, 2002*). As elevadas temperaturas e o tempo de secagem prolongado também degradam a cor original do produto.








| APLICAÇÕES  Fa Produtos a obter     | erduras, frutas cítricas, frutas não cítricas, batata,<br>ubprodutos gerados na elaboração do vinho e da sidra, etc.<br>arinhas vegetais específicas de cada subproduto. |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| APLICAÇÕES  Fa Produtos a obter     | ubprodutos gerados na elaboração do vinho e da sidra, etc.                                                                                                               |
| APLICAÇÕES  Fa Produtos a obter  Mi |                                                                                                                                                                          |
| Produtos a obter Mi                 | arinhas vegetais específicas de cada subproduto.                                                                                                                         |
| Produtos a obter                    | arinhas vegetais específicas de cada subproduto.                                                                                                                         |
|                                     | = ;                                                                                                                                                                      |
|                                     | listura de farinhas vegetais procedentes de vários                                                                                                                       |
| SL                                  | ubprodutos.                                                                                                                                                              |
| Mercados potenciais Er              | mpresas formuladoras de pensos para alimentação animal                                                                                                                   |
| FATORES DE INFLUÊNCIA               |                                                                                                                                                                          |
| Técnicos Ne                         | ecessidade de controlo de tempo e temperatura para evitar a                                                                                                              |
| pr                                  | rodução de substâncias indesejáveis.                                                                                                                                     |
| EI                                  | levados requisitos energéticos que elevam os custos de                                                                                                                   |
| ot                                  | peração e aumentam o impacto ambiental.                                                                                                                                  |
| Económicos e de mercado El          | levados tempos de processamento e elevadas temperaturas                                                                                                                  |
| qı                                  | ue induzem importantes modificações nas caraterísticas                                                                                                                   |
| fís                                 | sicas, químicas, organolépticas e nutricionais.                                                                                                                          |
| Legislativos Cu                     | umprimento da legislação de emissões de fumos                                                                                                                            |
| GRAU DE VIABILIDADE AI              |                                                                                                                                                                          |





#### Pulse Combustion Drying (PCD)

A tecnologia PCD baseia-se na atomização de um líquido ou pasta mediante a utilização de ondas sónicas ou de choque (impulsos) produzida por uma combustão intermitente ou pulsante a alta frequência. Esta tecnologia é equivalente ao *spray drying*, embora apresente algumas vantagens como



tempos de operação mais curtos ou temperaturas de processamento menos elevadas.

A tecnologia PCD tem grandes perspetivas para se converterem numa alternativa às tecnologias de secagem consideradas atualmente maduras, e que foram desenvolvidas há muitos anos, numa época em que os aspetos de eficiência energética, alteração climática, qualidade do produto, etc. eram menos relevantes do que na atualidade (*Kudra et al., 2009*). A principal vantagem que a PCD proporciona, face às tecnologias de secagem utilizadas atualmente, é um consumo de energia 30% inferior para a mesma capacidade de evaporação, o que se consegue com uma alta eficiência de combustão, que se situa entre 90-99 %, face aos 80-96% dos queimadores convencionais (*Kudra, 2008*), o que, aliado à existência no mercado de produtos que em seco aumentam significativamente o seu valor e estabilidade, fazem da tecnologia PCD uma alternativa clara às tecnologias de secagem convencionais.

Não obstante, antes de utilizar esta tecnologia como tratamento para a eliminação de água dos subprodutos alimentares a grande escala, é necessário levar a cabo um processo de validação da mesma para assegurar que, por um lado, se obtêm produtos em pó da maior qualidade nutricional e funcional, ao mesmo tempo que se assegura a higiene e a ausência de substâncias indesejáveis (hidrocarbonetos policíclicos aromáticos, partículas queimadas, etc.).







| PULSE COMBUSTION DRYING (PCD)      |                                                                                                                                                             |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| POTENCIAL-ORIGEM                   |                                                                                                                                                             |
| Subprodutos utilizáveis            | Verduras, frutas cítricas, frutas não cítricas, batata,<br>subprodutos gerados na elaboração do vinho e da sidra,                                           |
| APLICAÇÕES                         |                                                                                                                                                             |
| Produtos a obter                   | Farinhas vegetais específicas de cada subproduto.  Misturas de farinhas vegetais procedentes de vários subprodutos.                                         |
| Mercados potenciais                | Empresas formuladoras de pensos para alimentação animal                                                                                                     |
| FATORES DE INFLUÊNCIA              |                                                                                                                                                             |
| Técnicos (requisitos operacionais) | Necessidade de instalação de uma fonte de combustível.<br>Limitação a produtos líquidos pastosos e/ou triturados.                                           |
| Económicos e de mercado            | Alta eficiência de combustão: redução de 30% do consumo energético.  Alta eficácia de secagem: maior valor económico e maior estabilidade do produto final. |
| Legislativos                       | Necessidade de validação da tecnologia no que se refere à presença de substâncias indesejáveis para cada tipo de subproduto                                 |
| GRAU DE VIABILIDADE                | Média: necessidade de validação da tecnologia para cada tipo de subproduto.                                                                                 |







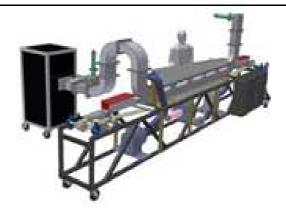
#### **Microondas**

A tecnologia de secagem por microondas baseia-se em:

- Secagem por microondas e secagem dielétrica: utilizam-se diferentes tipos de ondas eletromagnéticas que interagem com o material gerando calor, que evapora a humidade. Estas técnicas aceleram consideravelmente a secagem, dando lugar a processos mais curtos.
- Secagem a frio por microondas: similar à secagem a frio convencional, mas mais rápida devido a que o aquecimento se produz por microondas.

A secagem por microondas, em comparação com os processos convencionais de desidratação de alimentos com ar quente, conduz a tempos de processamento mais curtos, melhores rendimentos energéticos e melhores caraterísticas na qualidade do produto final.

As microondas aquecem seletivamente aquelas partes do alimento com maior conteúdo de água, pelo que este sistema de aquecimento de alimentos é, lógicamente, mais rápido do que a secagem convencional. Além disso, o dano térmico que esta radiação produz é mínimo e não provoca alterações da cor, uma vez que o alimento quase não se aquece (*Fellows*, 1994).


Deste modo a aplicação das microondas para a secagem de frações alimentares poderia constituir um fator chave para potenciar a viabilidade técnico-económica dos sistemas de valorização deste tipo de subprodutos, uma vez que, por um lado, ao melhorar a eficiência energética reduz tanto as emissões diretas como os custos de operação do processo. Por outro lado, dotando de maior valor os materiais tratados, ao minimizar durante a secagem as perdas e o deterioro de substâncias de interesse presentes nestes materiais, que podem melhorar a sua qualidade nutritiva e organoléptica, aumentando assim o seu valor no mercado.







#### **MICRO-ONDES**



| POTENCIAL-ORIGEM        |                                                                                                                                                                                    |  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Subprodutos utilizáveis | Verduras, frutas cítricas, frutas não cítricas, batata, subprodutos gerados na elaboração do vinho e da sidra                                                                      |  |
| APLICAÇÕES              |                                                                                                                                                                                    |  |
| Produtos a obter        | Produtos de valor secos provenientes de subprodutos vegetais.  Farinhas vegetais específicas de cada subproduto.  Misturas de farinhas vegetais procedentes de varios subprodutos. |  |
| Mercados potenciais     | Empresas formuladoras de pensos para alimentação animal.<br>Empresas de obtenção de componentes de valor.                                                                          |  |
| FATORES DE INFLUÊNCIA   |                                                                                                                                                                                    |  |
| Técnicos                | Necessidade de controlo de tempos e potências de secagem.                                                                                                                          |  |
| Económicos e de mercado | Redução dos tempos de secagem.  Alta eficácia de secagem a menores temperaturas: menor alteração e maior estabilidade do produto final.                                            |  |
| Legislativos            | Necessidade de validação da tecnologia no que se refere à presença de substâncias indesejáveis para cada tipo de subproduto                                                        |  |
| GRAU DE VIABILIDADE     | Alta                                                                                                                                                                               |  |







#### - RESTRUTURAÇÃO E TEXTURIZAÇÃO

A extrusão de alimentos é um processo em que um material (grão, farinha ou subproduto) é forçado a fluir, sob uma mais do que uma variedade de condições de mistura, aquecimento e corte, através de uma placa/boquilha desenhada para dar formar ou expandir os ingredientes.

Utilizando como matéria-prima subprodutos ou co-produtos resultantes do processamento dos transformados vegetais, é possível desenhar alimentos restruturados sob a forma de embutidos pasteurizados fatiáveis, produtos moldados/conformados, recheios, novas formas e apresentações (cores, aromas, novos ingredientes, etc.). Esta via pode constituir uma interessante opção tecnológica para proporcionar valor acrescentado, não só às matérias primas mas também aos subprodutos gerados nos processos da sua transformação.

| POTENCIAL-ORIGEM                        |                                                                                                                                                                                                                                   |  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Subprodutos, co-produtos<br>utilizáveis | Subprodutos e co-produtos gerados no processamento vegetais diversos.                                                                                                                                                             |  |
| APLICAÇÕES                              |                                                                                                                                                                                                                                   |  |
| Produtos a obter                        | Produtos pasteurizados restruturados, prontos para consumir, tipo embutido fatiável ou moldados em porções individuais. Produtos congelados tipo hamburguer com base em produtos vegetais.                                        |  |
| Mercados potenciais                     | Sector Horeca, canal distribuição, Delicatessen, mercado vegetariano                                                                                                                                                              |  |
| FATORES DE INFLUÊNCIA                   |                                                                                                                                                                                                                                   |  |
| Técnicos (requisitos operacionais)      | Controlo de oxidação do champignon, limpeza dos co-produtos, rendimento após a cocção, controlo do sabor e da textura final (fibrosidade, sucos). Equipamento (picadora/misturadora, embutidora, pasteurizador (forno de cocção)) |  |
| Económicos e de mercado                 | Obtenção de um produto de alto valor, valorização de co-produtos, inovação, acesso a novos mercados. Estabilidade do produto final na conservação.                                                                                |  |
| Legislativos                            | A legislação que afete os Produtos tratados pelo calor (PASTEURIZADOS).                                                                                                                                                           |  |
| GRAU DE VIABILIDADE                     | Alta                                                                                                                                                                                                                              |  |







# 4.3. Valorização agrícola

#### VALORIZAÇÃO COMPOSTAGEM

Processo de descomposição biológica da materia orgânica, em condições controladas de humidade e temperatura, que oscila entre os 50 os 70° C, provocando assim a destruição de elementos patogénicos e portanto a total inocuidade do produto. O composto obtido é utilizado na agricultura e jardinagem como reforço do solo, e também se utiliza em paisagismo, controlo da erosão, revestimento e recuperação de solos.



| POTENCIAL-ORIGEM        |                                                                             |  |
|-------------------------|-----------------------------------------------------------------------------|--|
| Subprodutos utilizáveis | Verduras, frutas cítricas, frutas não cítricas, batata, subprodutos gerados |  |
|                         | na elaboração do vinho e da sidra, polpa de café, etc.                      |  |
| APLICAÇÕES              |                                                                             |  |
| Produtos a obter        | Substrato para adubo agrícola.                                              |  |
| Mercados potenciais     | Sector agrícola.                                                            |  |
| FATORES DE INFLUÊNCIA   |                                                                             |  |
| Técnicos (requisitos    | Sistemas de controlo das condições adequadas para a descomposição da        |  |
| operacionais)           | matéria orgánica: temperatura e humidade.                                   |  |
| Económicos e de mercado | Descomposição lenta da matéria orgânica.                                    |  |
| Economicos e de mercado | Sistema barato e pouco complexo do tratamento de resíduos.                  |  |
| Legislativos            | Necessidade de tratamento integral do subproduto: gestão do substrato.      |  |
| GRAU DE VIABILIDADE     | Alta                                                                        |  |







# 4.4. Valorização ambiental

#### <u>VALORIZAÇÃOADSORÇÃO</u>

Certos subprodutos da indústria do processamento de transformados vegetais possuem interesantes propiedades adsorbentes, que podem ser uitlizadas para a descontaminação de efluentes com conteúdo de metais pesados.

| Subprodutos utilizáveis: ADSORVENTE | ADSORVATO                              |
|-------------------------------------|----------------------------------------|
|                                     | Cobre (Cu)                             |
| Casca de noz                        | Manganésio (Mn)                        |
|                                     | Chumbo (Pb)                            |
|                                     | Cádmio (Cd)                            |
| Casca de arroz                      | Chumbo (Pb)                            |
| 2 11 1 1 1                          | Cádmio (Cd)                            |
| Palha de trigo                      | Chumbo (Pb)                            |
|                                     | Crómio (Cr)                            |
| Cascas de amêndoa modificada        | Chumbo (Pb)                            |
|                                     | Cobre (Cu)                             |
| Bagaço da indústria cervejeira      | Crómio trivalente (Cr <sup>+++</sup> ) |
| Resíduos de milho                   | Cobre (Cu <sup>++</sup> )              |

| POTENCIAL-ORIGEM                   |                                                                                                                         |  |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|
| APLICAÇÕES                         |                                                                                                                         |  |
| Produtos a obter                   | Descontaminação de metais pesados de efluentes                                                                          |  |
| Mercados potenciais                | Empresas de tratamento de águas residuais, depuradoras industriais                                                      |  |
| FATORES DE INFLUÊNCIA              |                                                                                                                         |  |
| Técnicos (requisitos operacionais) | Caraterização dos efluentes a tratar, tipo de contaminante, concentração inicial que requer estudos prévios de extração |  |
| GRAU DE VIABILIDADE                | Experimental                                                                                                            |  |