RECERCA I TECNOLOGIA AGROALIMENTÀRIES

ALARMTOX: Assays and biosensors for okadaic acid and microcystin based on genetically-engineered protein phosphatases

Helena Eixarch¹; Diana Garibo¹; Pablo de la Iglesia¹; Esther Barber¹; Jorge Diogène¹; Margarita Fernández-Tejedor¹; Cintia Flores²; Audrey Sassolas⁴; Gaelle Catanante⁴; Alain Guibert³; Valérie Dumont³; Josep Caixach²; Jean-Louis Marty⁴; Mònica Campàs¹ ¹IRTA, Ctra. Poble Nou, km. 5.5, 43540 Sant Carles de la Ràpita, Spain; ²IDAEA, CSIC, C. Jordi Girona, 18-26, 08034 Barcelona, Spain; ³CRITT-BioIndustries, INSA,135, Av. de Rangueil, 31077 Toulouse Cedex, France; ⁴BIOMEM-IMAGES, UPVD, 52 Av. Paul Alduy, 66860 Perpignan Cedex, France

monica.campas@irta.cat

INTRODUCTION

Several microalgae species are able to produce toxins whose presence has negative social-economical effects. Food and health safety is compromised through contamination of shellfish, drinkable water and nutritional algae, or by direct contact with them; their correct evaluation, which may eventually result in the closure of coastal shellfish production areas or aquatic recreational areas, favors consumer protection and the long-term sustainability of aquaculture.

2 3 4

THE PROJECT

The main objective of the ALARMTOX project is to develop and validate assays and biosensors for biotoxin detection that guarantee the quality of continental waters and aquaculture products. These new technologies should be more specific, more sensitive, faster and less expensive than the currently used biological and analytical methods. A multi-disciplinary approach will be followed, exploiting the expertise of each one of the partners.

STEP 1: Production of protein phosphatases

Protein phosphatases (PPs) have been genetically engineered to improve their stability and their sensitivity to microcystins (MCs), okadaic acid (OA) and derivatives. The PPs produced at CRITT-Bio-Industries-INSA have been purified (figure 1) and will be used in the subsequent steps of the project. There PP has an His tail that will allow their conjugation to magnetic particles via coordination chemistry.

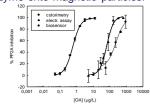
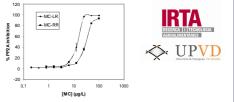
kDa Figure 1: 250 (Left) Coomassie blue stained SDS-PAGE gel. 100 75 Lane 1: Purified genetically engineered PP; Lane2: 50 Molecular weight marker; 37 Lanes 3 to 6: BSA. (Right) Western blot of 25 20 15 purified PP, as detected by an anti-His antibody.

CRITT BIO-INDUSTRIE

UP

STEP 2: Development of colorimetric assays and electrochemical biosensors

The extent of PP activity inhibition by MCs and OA is proportional to the amount of toxin present in the sample (figures 2 and 3). This is the basis for both the colorimetric assay and the electrochemical biosensor. At present, the colorimetric approach provides lower limits of detection than the electrochemical one, both with the enzyme in solution or immobilised into polymers. It is expected to improve the sensitivity by immobilising the enzyme onto magnetic particles.

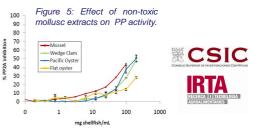

Figure 2 (left): OA calibration curve obtained with i) the colorimetric assay (PP in solution), ii) the electrochemical assay (PP in solution), and iii) the biosensor (PP immobilised by entrapment). p-Nitrophenyl phosphate is hydrolysed by PP and its coloured product is detected at 405 nm or α -naphthyl phosphate is hydrolysed by PP and its electroactive product is detected by Differential Pulse Voltammetry.

Figure 3 (right): MC calibration curve obtained with the colorimetric assay (PP in solution). p-Nitrophenyl phosphate is hydrolysed by PP and its coloured product is detected at 405 nm.

STEP 3: Validation of assays and biosensors Several public institutions and private enterprises are providing water, microalgae and shellfish samples from a great variety of ecosystems (figure 4), which are being tested with the developed assays and biosensors. Their performance and validity is being checked by comparison with LC-MS/MS analysis. Matrix effects have also been evaluated (figure 5).

ALARMTOX is a project co-financed by the European Union through the Interreg IV B SUDOE (South-West Europe) Territorial Cooperation Programme. It is integrated into the first priority of the Programme: "Promotion of innovation and constitution of stable cooperation networks in technological matters". The presented opinions only compromise the partners and, consequently, in no way represent the opinion of the Territorial Cooperation Programme's management bodies.

