

1. La Agencia de Energía y el proyecto e-AIRE

La Agencia Provincial de la Energía de Ávila (APEA), dependiente de la Diputación, lleva trabajando desde 1999 en la mejora de la eficiencia energética y las energías renovables en la provincia de Ávila.

Su actividad se ha traducido en actuaciones en distintos sectores y con diferentes beneficiarios: municipios, empresas, centros de enseñanza, particulares, entre otros, con el objetivo prioritario de mejorar el comportamiento energético de los distintos agentes de la provincia.

Una de las principales vías para conseguir dicho propósito ha consistido en participar en diferentes proyectos europeos. La realización de esta guía, está enmarcada dentro del desarrollo del proyecto e-Aire.

El proyecto e-Aire tiene una duración de dos años, desde Enero de 2011 a Diciembre de 2012. Contempla la reducción de emisiones de gases de efecto invernadero en la provincia de Ávila. Para la que se han definido las siguientes acciones: Inventario de emisiones en la provincia de Ávila, Auditorías Energéticas, y diferentes campañas de promoción y divulgación.

Las auditorías energéticas llevadas a cabo, justifican la edición de esta guía. Los datos obtenidos se basan en las auditorías realizadas en ayuntamientos, empresas y viviendas de turismo rural, que han marcado la pauta de que medidas habría que adoptar para la reducción del consumo energético y poder realizar unas guías generales que sirvan de base para analizar las mejores decisiones de reducción del consumo de energía.

2. Importancia del ahorro y la eficiencia energética

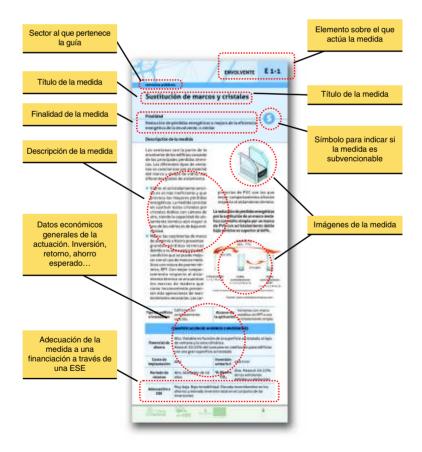
El consumo de energía es una necesidad para realizar cualquier actividad. Su elevado coste económico, en continuo incremento, y los costes sociales e impactos medioambientales que lleva asociados nos obligan a utilizarla, de la manera más eficiente posible.

La optimización del uso de la energía en el sector público, se ha convertido en un objetivo primordial, tanto por el peso económico que la factura energética tiene en los presupuestos de los municipios, cada vez mayor, como por la sensibilidad de la ciudadanía y los propios gestores municipales, de la necesidad de reducir los impactos medioambientales que el uso de la energía conlleva.

Así, el uso eficiente de la energía es una de las prioridades de las Administraciones, manteniendo la calidad de los servicios que presta y siendo ejemplo para los ciudadanos.

La optimización energética de las instalaciones y edificios procura diferentes objetivos:

- Alcanzar una reducción de los consumos energéticos manteniendo los niveles de confort de los usuarios de las instalaciones y la calidad del servicio.
- Disminuir los costes de operación y mantenimiento de los equipos, alargando su vida útil
- Mejorar la eficiencia energética adecuando los equipos e instalaciones a la normativa vigente.
- Mejorar la imagen de los Municipios fomentando la sensibilización con el medio ambiente y la eficiencia energética.
- Utilización de nuevas tecnologías principalmente en sistemas de climatización e iluminación.
- Fomento del uso de las energías renovables.
- Reducción de las emisiones de gases de efecto invernadero a la atmosfera.



3. Uso de la guía

La guía que tiene en sus manos pretende servir de apoyo a la decisión sobre qué medidas de reducción del consumo de energía se pueden realizar en su municipio

La guía tiene un carácter generalista ya que pretende ser una referencia para los municipios en su conjunto, por lo que cualquier decisión deberá tomarse con el estudio detallado del caso particular de que se trate. De esta forma, la guía servirá para orientar las decisiones hacia las mejores opciones posibles, que deberán concretarse para cada caso, además de para marcar de forma clara a los técnicos y responsables municipales qué actuaciones se pueden considerar para conseguir el objetivo de reducir el consumo energético.

El núcleo central de la guía es el de las "Medidas de Ahorro y Eficiencia Energética", donde se exponen las medidas a analizar para buscar el ahorro y la eficiencia energética. Cada medida tiene el formato que aparece a continuación:

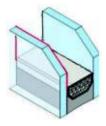
Las medidas que se desarrollan en la guía se han dividido, según las instalaciones o equipos sobre las que actúan en:

Envolvente térmica de los edificios	7
 Sustitución de marcos y cristales Reducción de infiltraciones a través de puertas y 	7
ventanas	
Aislamiento de la envolvente	
 Instalar cortinas de aire en puertas exteriores 	
Instalación de láminas de control solar	11
Generadores de calor, climatización y agua caliente sanitaria	12
Instalar válvulas termostáticas en radiadores	
Regulación de la temperatura de climatización Continuida de caldana manatura más aficientes	_
 Sustitución de caldera por otra más eficiente Instalar caldera de biomasa 	14
Uso de enfriamiento gratuito o freecooling	
Aislamiento del circuito de distribución de	10
climatización	17
Sustitución de gasóleo y fuelóleo por gas natural	
Mantenimiento de calderas	10
Instalar quemadores modulantes y sensores de oxigeno	
 Sustitución de radiadores o aerotermos eléctricos 	
por bombas de calor	
Sistemas radiantes (suelo/techo radiante refrescante)	
Recuperadores de calor Instalar paneles solares térmicos	
Instatar panetes sotares termicos	24
	25
 Sustitución lámparas incandescentes por fluorescentes 	
de bajo consumo	25
 Sustitución de lámparas halógenas convencionales 	
por lámparas halógenas IRC	26
 Sustitución de balastos electromagnéticos por 	
balastos electrónicos en luminarias	27
 Instalar detectores de presencia en zonas de uso 	
esporádico	28
 Aprovechamiento de la luz natural mediante sensores 	
de luz	
Zonificación de la iluminación	
Iluminación con lámparas LED	31
Sustitución de lámparas de vapor de mercurio en	
iluminación exterior	32
 Instalación de sistemas de control y regulación en 	
alumbrado público	33
Equipos	34
Instalar perlizadores en grifos	34
Grifos temporizados	
 Control del stand by. Uso de regletas múltiples con 	
interruptor o enchufe programable	36
 Instalar paneles solares fotovoltaicos en las cubiertas 	
de los edificios	37
Instalar sistemas de cogeneración	38
 Instalación de sistemas de energía geotérmica 	

Motores	40
Variadores de velocidad en motores	40
Motores de alta eficiencia	
Otras posibilidades de ahorro en motores	42
Facturación eléctrica	43
 Instalar baterías de condensadores para reducir la 	
energía reactiva	43
 Optimización de la contratación de los suministros eléctricos 	44
 Utilización de herramientas informáticas para la 	
monitorización de consumos	45
Medidas genéricas	46
Mantenimiento adecuado de las instalaciones	46
 Realización de auditorías energéticas Instalar sistemas de telegestión energética en los 	47
edificios	48
 Obtener la calificación energética de los edificios 	
existentes	49
 Buenas prácticas de consumo energético entre los 	
usuarios	
Sistema de gestión energética	51

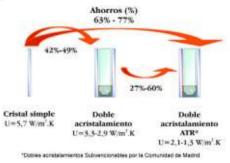
Sustitución de marcos y cristales

Finalidad


Reducción de pérdidas energéticas o mejora de la eficiencia energética de la envolvente, o similar

S

Descripción de la medida


Las ventanas son la parte de la envolvente de los edificios causante de las principales pérdidas térmicas. Los diferentes tipos de ventanas se caracterizan por el material del marco y el tipo de vidrio, con diferentes grados de aislamiento.

- Vidrio: el acristalamiento sencillo es el más ineficiente y que provoca las mayores pérdidas energéticas. La medida consiste en sustituir estos cristales por cristales dobles con cámara de aire, siendo la capacidad de aislamiento térmico aún mayor si uno de los vidrios es de baja emisividad.
- Marco: las carpinterías de marco de aluminio o hierro presentan grandes pérdidas térmicas debido a su alta conductividad, condición que se puede mejorar con el uso de marcos metálicos con rotura de puente térmico, RPT. Con mejor comportamiento respecto al aislamiento térmico se encuentran los marcos de madera que como inconveniente presentan más operaciones de mantenimiento necesarias. Las car-

pinterías de PVC son las que mejor comportamiento ofrecen respecto al aislamiento térmico.

La reducción de pérdidas energéticas por la sustitución de un marco metálico con vidrio simple por un marco de PVC con acristalamiento doble bajo emisivo es superior al 60%.

Fuente: www.cambialasventanas.com

Tipo de edificio o instalación	Edificios con acristalamiento sencillo.	Alcance de la aplicació	motálico sin RPT o con		
C	CUANTIFICACIÓN DE AHORROS E INVERSIONES				
Potencial de ahorro	,				
Coste de implantación	Alto Inversión unitaria € 450 €/m²				
Periodo de retorno	Alto. Alrededor de 10 años	% Ahorro CO ₂	Alto. Hasta el 20-25% de las emisiones debidas a calefacción		
Adecuación a ESE Muy baja. Baja rentabilidad. Elevada incertidumbre en los ahorros y elevada inversión total en el conjunto de las inversiones					

Reducción de infiltraciones a través de puertas, ventanas y huecos de persianas

Finalidad

Reducción del nivel de infiltraciones del edificio

Descripción de la medida

Limitar las infiltraciones a través de puertas y ventanas en locales climatizados reduce la cantidad de energía necesaria en climatización. De la misma forma, los huecos de persiana suelen ser elementos con aislamiento deficitario, por lo que su mejora es un aspecto a estudiar.

Se propone la reducción de las infiltraciones a través de los huecos mediante el sellado de las juntas de marcos y aislamiento de las cajas de persianas.

Para tapar rendijas y reducir las infiltraciones de aire exterior pueden utilizarse medios sencillos como la silicona, masilla o burletes, que son pequeñas tiras adhesivas que se colocan en los perfiles de puertas y ventanas para limitar las infiltraciones.

En cuanto a los huecos de persiana, además de lo anterior existen soluciones de aislamiento de las mismas o sustitución.

www.brinox.com

Tipo de edificio o instalación	Edificios con infiltraciones de aire exterior	Alcance de la aplicaciór	7 1		
C	CUANTIFICACIÓN DE AHORROS E INVERSIONES				
Potencial de ahorro	Medio. Función del nivel de infiltraciones y del porcentaje de huecos. En los casos graves, la limitación de infiltraciones puede suponer una reducción de hasta un 50% de las pérdidas				
Coste de implantación	Bajo. Medida de fácil implantación Inversión unitaria €				
Periodo de retorno	Bajo. Menos de 1 año	% Ahorro CO ₂	Medio. Hasta un 50% de las emisiones debidas a equipos de climatización		
Adecuación a ESE	Media. Alta rentabilidad por muy baja inversión. Incertidumbre en los ahorros				

Aislamiento de la envolvente

Finalidad

Reducción de pérdidas energéticas debido a la transmisión térmica de la envolvente exterior

S

Descripción de la medida

Las reformas en edificios existentes son una buena oportunidad para realizar mejoras en la envolvente que aumenten su rendimiento energético.

Las mejoras del aislamiento térmico del edifico pueden suponer ahorros energéticos del 30% del consumo de calefacción y aire acondicionado.

Los materiales utilizados son varios, con diferentes usos según la necesidad tratada: espuma de poliuretano, planchas de poliestireno, lana de vidrio...

Los tipos de edificios más idóneos para estas medidas son aquellos con fachadas con poca superficie acristalada y cubiertas accesibles y homogéneas.

Este tipo de intervención puede realizarse por el interior, por el

exterior o en caso de cámaras de aire accesibles rellenando estas.

- Por el interior: pueden producir molestias a los usuarios de los edificios y en ciertos casos disminuyen la superficie útil.
- Por el exterior necesitan la utilización de medios auxiliares, como andamios, que encarecen la intervención.

Tipo de edificio o instalación	Edificios que necesitan reforma y con aislamiento deficiente	Alcance de la aplicaciór	Fachadas y cubiertas		
C	CUANTIFICACIÓN DE AHORROS E INVERSIONES				
Potencial de ahorro	Alto. Función de las características del edificio y su ubicación. Más del 60% de la demanda térmica del edificio sin aislar				
Coste de implantación	Variable, en función del edifico, del tipo de intervención y del espesor del aislamiento		Relleno de cámaras en fachada: 8€/m² Cubiertas: 12-20€/m²		
Periodo de retorno	Variable. Desde 3 a 10 años	% Ahorro CO ₂	Alto		
Adecuación a ESE	Baja. Retorno muy variable en función de la solución técnica. Elevada inversión en el conjunto total. Elevada incertidumbre en los ahorros				

Instalar cortinas de aire en puertas exteriores

Finalidad

Reducción de pérdidas energéticas a través de huecos abiertos al exterior

Descripción de la medida

La cortina de aire consiste en un ventilador que impulsa aire hacia el suelo reduciendo las pérdidas de aire climatizado durante la apertura de las puertas.

Las cortinas de aire instaladas sobre las puertas exteriores en espacios climatizados con mucho tránsito de personas consiguen importantes ahorros energéticos en consumo de climatización. Al mismo tiempo mantienen el aire limpio e impiden la entrada de polvo, humos, insectos y polución exterior en general.

Esta medida es más efectiva en edificios situados en zonas climáticas con temperaturas más extremas en invierno y/o verano. Asimismo para que la medida sea eficaz desde el punto de vista del ahorro energético se necesita una densidad de tráfico de al menos 25 personas/hora.

Fuente: www.mitsubishielectric.es

Tipo de edificio o instalación	Edificios de atención al público	Alcance de la aplicació	Priortas do ontrada
C	CUANTIFICACIÓN DE AHO	RROS E INVE	RSIONES
Potencial de ahorro Medio. Aumenta cuanto mayor sea la densidad de tránsito a través de la puerta. Ahorro >60% de la energía pérdida debido a la apertura de la puerta			
Coste de implantación	Medio Inversión Fácil instalación unitaria € 2.000 - 3.000 €/puerta		
Periodo de retorno	Medio. Alrededor de 5 años en los casos favorables	% Ahorro CO ₂	Bajo - Medio
Adecuación a ESE	Media. Rentabilidad media. Baja inversión en el conjunto		

Instalación de láminas de control solar

Finalidad


Reducción de las ganancias térmicas a través de acristalamientos

Descripción de la medida

Limitación de la energía transmitida a través de los cristales mediante láminas adhesivas de control solar que reflejan las radiaciones infrarrojas con lo que se disminuye el efecto invernadero en las superficies acristaladas de los edificios y reduce el calor interior lo que conlleva un menor consumo de los equipos de refrigeración y el consiguiente ahorro energético

Esta medida es especialmente recomendable en edificios con grandes fachadas acristaladas situados en zonas cálidas con veranos muy calurosos e inviernos templados.

En un clima cálido, la lámina solar rechaza hasta el 90% de la radiación solar y el deslumbramiento Cuando el tiempo es frío, la misma lámina puede impedir la pérdida de hasta un 20% del calor interior.

Tipo de edificio
o instalación

Edificios con grandes superficies acristaladas.

Alcance de la aplicación

Acristalamientos

CUANTIFICACIÓN DE AHORROS E INVERSIONES				
Potencial de ahorro	Medio. Función de la zona y de las características del edificio. Ahorros del 5% al 10% del consumo en refrigeración			
Coste de implantación	Bajo. Medida de fácil implantación Inversión unitaria € 20€/m²			
Periodo de retorno	Bajo. Menos de 3 años **Mahorro CO2** Bajo. Hasta un 10% de las emisiones producidas por la refrigeración			
Adecuación a Alta. Rentabilidad elevada. Baja inversión en el conjunto total. Incertidumbre en los ahorros media-baja				

G<mark>E</mark>NERADORES DE CALOR, CLIMAT<mark>IZACIÓN Y</mark> AGUA CALIENTE SANITARIA

servicios públicos

Instalar válvulas termostáticas en radiadores

Finalidad

Regulación de la temperatura de los radiadores

S

Descripción de la medida

La colocación de válvulas termostáticas en los radiadores es una mejora de aplicación sencilla, de baja inversión y periodos de retorno bajos. Permite una regulación estancia por estancia, en función de sus características de temperatura, insolación y uso. Por ejemplo, permite regular de distinta forma estancias orientadas al norte y al sur.

Se consigue regular de forma sencilla la temperatura ambiente de las estancias manteniéndola constante y evitando que se sobrepasen los valores de consigna, limitando el derroche energético. Existen cabezales que permiten su bloqueo para evitar su manipulación, muy adecuados para lugares públicos.

En edificios donde solo algunas zonas son utilizadas después del horario habitual, la instalación de válvulas termostáticas por control remoto permite calentar fuera del horario solo las zonas que se precisan.

Tipo de edificio o instalación	Edificios con sistema centralizado de calefacción	Alcance de la aplicació	Radiadoros
C	CUANTIFICACIÓN DE AHO	RROS E INVE	RSIONES
Potencial de ahorro	Alto, en función del edificio y de la zonificación de los circuitos de distribución. Entre un 5% y un 7% de la energía de generación de calor		
Coste de implantación	Bajo. Medida de fácil implantación implantación Inversión unitaria €		
Periodo de retorno	Bajo. Entre 1 y 2 años	% Ahorro CO ₂	Alto. Hasta un 40 - 50%
Adecuación a ESE	Muy Alta. Rentabilidad muy elevada. Baja inversión en el		

Regulación de la temperatura de climatización

Finalidad

Regulación de la temperatura de climatización

Descripción de la medida

La regulación de los termostatos de climatización permite reducir el consumo energético de un edificio y aumenta el confort de los usuarios.

La temperatura de confort recomendada en edificios de trabajo sedentario se recoge en la siguiente tabla:

ESTACION	TEMPERATURA
Invierno	21 °C
Verano	26 °C

La medida comprende un ajuste periódico de los termostatos, su correcta colocación en lugares representativos y la limitación de la temperatura que puede ser seleccionada por el usuario.

Para valorar el impacto de esta medida, conviene saber que incrementar 1°C la temperatura en invierno, significa un incremento del 7% en el consumo.

Tipo de edificio o instalación	Edificios con sistema centralizado de climatización	Alcance de la aplicació	accesibles a los		
	CUANTIFICACIÓN DE AHORROS E INVERSIONES				
Potencial de ahorro	Medio, en función del uso y la temperatura de consigna. Una variación en 1ºC de la temperatura supone un ahorro en torno al 7% del consumo en climatización				
Coste de implantación	Bajo. Medida de fácil implantación	Inversión unitaria €	Variable, en función de la instalación		
Periodo de retorno	Bajo. Entre 1 y 2 años	% Ahorro CO ₂	Medio, en función del uso y la temperatura de consigna		
Adecuación a ESE	Muy Alta. Rentabilidad muy elevada. Muy baja inversión en el conjunto total. Baja incertidumbre en los ahorros				

G<mark>E</mark>NERADORES DE CALOR, CLIMAT<mark>IZACIÓN Y</mark> AGUA CALIENTE SANITARIA

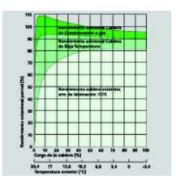
servicios públicos

Sustitución de caldera por otra más eficiente

Finalidad

Reducción del consumo de energía a través del uso de calderas más eficientes

Descripción de la medida


Con el cambio de caldera se busca aumentar el rendimiento de la generación de calor mediante la instalación de calderas de última tecnología, en vez de las calderas convencionales que trabajan todo el tiempo a una temperatura constante de aproximadamente 80°C, independientemente del calor que se necesite y la temperatura exterior.

En cambio, las calderas de baja temperatura permiten adaptar la temperatura en cada momento, consiguiendo un rendimiento estacionario cercano al 94%, con lo que se consigue hasta un 20% de ahorro en comparación con una caldera convencional.

Por su lado, las calderas de condensación consiguen rendimientos del 110 % sobre el poder calorífico inferior (P.C.I.) para cargas de trabajo bajas, y además reducen la temperatura de humos, gracias al aprovechamiento que hacen del calor latente de los gases de escape.

Se puede apreciar la diferencia en la gráfica, donde se comparan calderas convencionales (verde claro) con calderas de condensación (verde oscuro), y de baja temperatura.

El cambio de tecnología deberá estudiarse de acuerdo al uso de la instalación, ya que no existe una propuesta de cambio adecuada para todas las instalaciones.

Tipo de edificio o instalación	Edificios con calderas convencionales	Alcance de la aplicació	Calderas de más de n 15 años	
•	CUANTIFICACIÓN DE AHO	RROS E INVI	ERSIONES	
Potencial de ahorro	Alto. Dependiendo de la antigüedad de la caldera y del combustible utilizado	% Ahorro	Sobre un 20% del consumo de combustible	
Coste de implantación	Alto. Función del tipo de caldera y de la potencia necesaria	Inversión unitaria €	Baja temperatura: 40 - 60€/kW. Condensación: 80 - 120€/kW.	
Periodo de retorno	Alto. Entre 8 y 10 años	% Ahorro CO ₂	Alto. Hasta un 20% de las emisiones debidas al uso de la caldera (calefacción y ACS)	
Adecuación a ESE	Inversión media-alta en el conjunto total Baja			

Instalar caldera de biomasa

Finalidad

Reducción de las emisiones y los costes a través del uso de la biomasa como combustible

Descripción de la medida

La principal característica de la biomasa es que, desde el punto de vista de las emisiones de gases de efecto invernadero, está muy cerca de ser neutra; es decir el CO2 emitido por la combustión ha sido absorbido previamente por la planta a partir de la cual se ha generado. Desde el punto de vista económico, la principal ventaja es el menor precio de la energía útil respecto al gasóleo de calefacción.

En general, las calderas de biomasa de pequeño tamaño solo admiten combustibles estandarizados (pelets y astillas de características concretas). En el caso de calderas de mayor tamaño, normalmente se pueden utilizar diversos combustibles. Esta opción es la más interesante, ya que posibilita la utilización en cada momento del combustible que nos permita obtener un precio más económico de la energía útil.

Las principales diferencias entre las instalaciones de biomasa y las convencionales o basadas en combustibles fósiles, son las siguientes:

- Los sistemas basados en biocombustibles requieren más espacio.
- Las instalaciones de biomasa necesitan de operaciones de mantenimiento más frecuentes y de una mayor vigilancia si se quiere garantizar su correcta operación.
- Inversión inicial superior que en sistemas de combustibles fósiles.

Tipo de edificio o instalación	Edificio con sistema de calefacción centralizada	Alcance de la aplicació	Caldera				
C	CUANTIFICACIÓN DE AHORROS E INVERSIONES						
Potencial de ahorro	Alto en ahorro de emisiones de CO2 Más de un 20% de ahorro económico						
Coste de implantación	Alto	Inversión unitaria €	300 - 400 €/kW				
Periodo de retorno	Alto. Más de 10 años **Ahorro CO2** **Ahorro de CO2** **respecto a combustibles fósiles**						
Adecuación a ESE	Variable. Rentabilidad variable. Elevada inversión en el conjunto total. Baja incertidumbre en los ahorros. Otras consideraciones: sostenibilidad, baja incertidumbre en la variación del precio energético a largo plazo, carácter ejemplarizante						

GENERADORES DE CALOR, CLIMATIZACIÓN Y AGUA CALIENTE SANITARIA

servicios públicos

Uso de enfriamiento gratuito o freecooling

Finalidad

Aprovechar los aportes naturales

S

Descripción de la medida

El enfriamiento gratuito o freecooling consiste en utilizar la capacidad de refrigeración del aire exterior para renovar y enfriar el aire interior de un local con lo que se consigue reducir el consumo de energía de los equipos de refrigeración.

La medida propuesta consiste en realizar la ventilación de los edificios que poseen unidades de tratamiento de aire, de forma que el aire exterior entre en el local enfriándolo sin activar el sistema de aire acondicionado. Para ello, es necesario definir en qué condiciones y locales se realiza, ya que no siempre es una posibilidad real.

Los sistemas de enfriamiento gratuito además de ser económicos, utilizan el aire frío exterior para disipar las cargas internas, que al aumentar el caudal de aire exterior repercutirá en una mejora de la calidad del aire interior (IAQ).

www.directindustry.es

Tipo de edificio o instalación	Edificios con climatización	Alcance de la aplicació	tratamiento de aire				
•	CUANTIFICACIÓN DE AHORROS E INVERSIONES						
Potencial de ahorro	Medio. Dependiendo de la zona climática y de la tipología del edificio. Ahorros en torno al 5% del consumo en refrigeración. Puede llegar al 15% en edificios de alta ocupación						
Coste de implantación	Bajo si se dispone de un sistema de ventilación acoplado a la instalación de climatización.	En función del caudal de ventilación. En torn unitaria € a 10€/m² de superficie útil					
Periodo de retorno	Medio. 4 - 5 años	% Ahorro CO ₂	Bajo. 5% de las emisiones debidas a refrigeración				
Adecuación a ESE	Muy Alta. Rentabilidad muy elevada. Baja inversión en el conjunto total. Baja incertidumbre en los ahorros						

Aislamiento del circuito de distribución de climatización

Finalidad

Reducción de pérdidas energéticas

(5

Descripción de la medida

Un correcto aislamiento térmico de tuberías y conductos reduce las pérdidas en la distribución y mejora el rendimiento de las instalaciones debido a que los equipos trabajan con fluidos a temperaturas próximas a las de diseño.

Se recomienda aislar los elementos de los circuitos de distribución de agua caliente, agua fría, refrigerante y conductos de aire para limitar las pérdidas en el transporte. La reducción de pérdidas frente a una tubería sin aislar supera al 70%.

- En tuberías de distribución de agua: camisas de lana de vidrio o roca o coquillas flexibles de espuma elastomérica.
- En tuberías de cobre de refrigerante: coquillas elastoméricas.
- En conductos de aire: manta de lana de vidrio con protección metálica de aluminio.

Tipo de edificio o instalación	Edificios con sistema centralizado de climatización	Alcance de la aplicació	distribución do				
C	CUANTIFICACIÓN DE AHORROS E INVERSIONES						
Potencial de ahorro	Medio, en función del estado de la instalación. Ahorros de un 70% de las pérdidas de calor por la tubería						
Coste de implantación	Bajo. En función de la instalación. Medida de fácil implantación	Inversión Coquilla: 2-4€/m Conductos: 10-15€/m					
Periodo de retorno	Bajo. Menos de 2 años **Mahorro CO2* Bajo. Hasta un 7% de las emisiones de calefacción						
Adecuación a ESE	,,						

GENERADORES DE CALOR, CLIMATIZACIÓN Y AGUA CALIENTE SANITARIA

servicios públicos

Sustitución de gasóleo y fuelóleo por gas natural

Finalidad

Con el uso de gas natural como combustible, se disminuyen emisiones, se reduce el coste del combustible y mantenimiento, y se mejora el comportamiento y control de las calderas

Descripción de la medida

Sustitución del gasóleo y fuelóleo como combustible por gas natural, un combustible más barato y menos contaminante.

Para que sea factible implantar esta medida es necesario que exista red de distribución de gas natural próxima a la instalación. La implantación implica acondicionamiento de la sala de caldera para el nuevo combustible, cambio de quemador y según el tipo de caldera cambio de ésta.

Entre las ventajas que presenta el uso de gas natural como combustible se encuentran las siguientes:

- Suministro continuo sin necesidad de almacenamiento
- Menor mantenimiento de las instalaciones
- Mejor rendimiento de la combustión

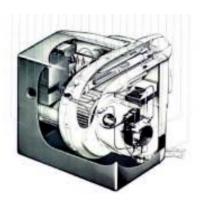
Fuente: www.swotti.com

Tipo de edificio o instalación	Edificios con acometida de gas natural accesible	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Acometida de combustible				
C	CUANTIFICACIÓN DE AHORROS E INVERSIONES						
Potencial de ahorro	Alto. Respecto al gasóleo 0,015€/kWh. 30% del precio del combustible						
Coste de implantación	Medio. Depende de la instalación Inversión unitaria € Variable						
Periodo de retorno	Medio. Entre 3 y 5 años	% Ahorro 40% en emisiones de CO2					
Adecuación a ESE	Media-alta. Rentabilidad media. Inversión media alta en el conjunto total. Baja incertidumbre en los ahorros						

Mantenimiento de calderas

Finalidad

Mantener en niveles óptimos el rendimiento de calderas, optimizando así el consumo de energía


Descripción de la medida

Uno de los puntos fundamentales que definen la eficiencia en la combustión de una caldera es la relación aire-combustible. Esta relación se ajusta en el mantenimiento periódico de las calderas.

Un buen mantenimiento de los equipos permite obtener el máximo rendimiento de las calderas. La regulación y limpieza de los quemadores consigue que la combustión sea óptima y por lo tanto el rendimiento de la caldera se encuentra en su valor máximo.

Es necesario realizar análisis de humos de forma periódica para comprobar que los parámetros de la combustión se encuentran dentro de los valores recomendados.

Tipo de edificio Instalaciones con

o instalación	calderas	la aplicació	n Calderas			
CUANTIFICACIÓN DE AHORROS E INVERSIONES						
Potencial de ahorro	Bajo. Depende del estado de los equipos. Hasta un 10% del consumo de combustible					
Coste de implantación	Bajo o nulo¹. Inversión unitaria € –					
Periodo de retorno	Bajo o nulo **Mahorro CO2** Bajo. Hasta un 10% d las emisiones de las calderas					
Adecuación a Muy Alta. Rentabilidad muy elevada. Sin inversión. Relativa incertidumbre en los ahorros						

Alcance de

 $^{^1}$ La norma UNE-EN 15459:2008 contempla un coste de mantenimiento preventivo anual del 1 - 2 % de la inversión inicial para calderas y del 4 -6% para quemadores.

G<mark>E</mark>NERADORES DE CALOR, CLIMATI<mark>Z</mark>ACIÓN Y AGUA CALIENTE SANITARIA

servicios públicos

Instalar quemadores modulantes y sensores de oxigeno

Finalidad

Optimizar la combustión en calderas, mejorando así su eficiencia energética

Descripción de la medida

El control y optimización de la combustión es importante en cualquier generador que use combustible fósil. El objetivo es liberar la mayor cantidad de energía posible del combustible, provocando una combustión completa con el adecuado exceso de aire, y minimizar la cantidad de energía perdida con los humos procedentes de la combustión, para lo que se utilizan quemadores modulantes y sensores de oxígeno.

Los quemadores modulantes regulan la salida de calor de la caldera de forma proporcional a la demanda en cada momento, reduciendo el número de encendidos y apagados con respecto a los quemadores convencionales, consiguiendo una mayor eficiencia en la generación de calor.

Esta medida consiste en la sustitución o adaptación, en los casos en que sea posible, de quemadores de una o dos etapas por quemadores modulantes.

Los sensores de oxígeno, también llamados sondas lambda, funcionan de manera que miden la concentración de oxígeno libre de forma continua dentro de la caldera, y de esta manera regulan la relación aire-combustible, manteniendo así las condiciones óptimas de combustión.

Estos dispositivos pueden suponer ahorros de combustible de al menos el 5%. Para que los períodos de retorno de la inversión sean aceptables, los sensores de oxígeno se deben aplicar en calderas grandes, de potencias superiores a 500 kW y con consumos continuados. Su beneficio máximo se alcanza cuando se combinan con quemadores modulantes.

Tipo de edificio o instalación	Instalaciones con calderas de gran potencia	Alcance de la aplicació	Ouemadores			
· ·	CUANTIFICACIÓN DE AHO	RROS E INVE	RSIONES			
Potencial de ahorro	Medio. Normalmente, aplicado en calderas de alta potencia. Ahorros de hasta un 10% del consumo de combustible					
Coste de implantación	Medio	edio Inversión unitaria € Entre 4000 y 6000€ en función de la potencia				
Periodo de retorno	Medio. Entre 3 y 5 años en calderas de alta potencia	calderas de alta				
Adecuación a ESE	Alta. Rentabilidad elevada. Baja-media inversión en el conjunto total. Baja incertidumbre en los ahorros					

Sustitución de radiadores o aerotermos eléctricos por bombas de calor

Finalidad

Reducción del consumo energético por medio equipos de climatización que utilizan la energía eléctrica más eficientemente

Descripción de la medida

La bomba de calor es un sistema con la capacidad de transportar calor desde un ambiente a una temperatura relativamente baja a otro con un nivel de temperatura mayor. Así, en época de calefacción, esta máquina extrae calor del ambiente exterior y lo cede al local. Cuando el usuario demanda refrigeración, la bomba de calor es capaz de extraer calor del interior del edificio y cederlo al exterior.

La gran ventaja de la bomba de calor reside en su eficiencia energética, puesto que es capaz de aportar más energía (térmica) que la que consume (eléctrica), aproximadamente entre 2 y 3 veces más. Esto es así porque el equipo recupera energía gratuita del ambiente exterior y la incorpora como energía útil para calefacción.

Por tanto, para lograr el mismo efecto consume menos energía que los aerotermos o radiadores eléctricos y, lógicamente, el coste es también más reducido.

Son equipos recomendables en edificios ubicados en zonas con inviernos moderadamente fríos pues en climas extremos el rendimiento baja significativamente

Tipo de edificio o instalación	Edificios con calefacción eléctrica		Radiadores y aerotermos eléctricos				
	CUANTIFICACIÓN DE AHORROS E INVERSIONES						
Potencial de ahorro	Alto. Ahorros superiores al 50% del consumo debido al uso de equipos eléctricos						
Coste de implantación	Medio	Inversión unitaria €	1000 €/kW				
Periodo de retorno	Medio. Para un número elevado de horas de funcionamiento en torno a los 5 años	% Ahorro CO ₂	Alto. Más de un 50% en las emisiones debidas a climatización con equipos eléctricos				
Adecuación a ESE	Variable. Rentabilidad dependiente del uso. Inversión media en el conjunto total. Baja incertidumbre en los ahorros						

GENERADORES DE CALOR, CLIMATIZACIÓN Y AGUA CALIENTE SANITARIA

servicios públicos

Sistemas radiantes (suelo/techo radiante refrescante)

Finalidad

Eficiencia energética en calefacción

Descripción de la medida

La modalidad más habitual de suelo radiante utiliza una red de tubos de polietileno instalados debajo del suelo, por donde circulará el agua caliente en un rango de temperaturas entre 34°C y 46°C. Así se logra una temperatura ambiente entre 18 y 22°C.

Es ideal para combinar con la energía solar térmica o bombas de calor geotérmicas, ya que la temperatura a la que circula el agua ronda los 40 °C, mientras que en los sistemas de radiadores convencionales es necesario elevarla hasta 60 °C o incluso más.

Como principales ventajas destacan:

- Se crea un calor uniforme. No se reseca el ambiente
- Mayor aprovechamiento del espacio al eliminar los radiadores verticales
- Posibilidad de utilizar agua fría para refrigerar en verano

Como principales inconvenientes:

- Instalación de obra costosa en instalaciones existentes
- Se recomienda evitar la instalación de suelos de madera o corcho
- Tiene gran inercia térmica, lo que supone tiempos largos de encendido y apagado

En nuevos edificios o grandes reformas, es una opción muy interesante frente a los radiadores verticales, sobre todo en edificios con grandes alturas y uso continuado.

Tipo de edificio o instalación	Edificios nuevos o que e siendo reformados de fo integral	orma Alcai		nce de la licación	Emisores de calor		
	CUANTIFICACIÓN DE AHORROS E INVERSIONES						
Potencial de ahorro	Medio-alto, sobre todo en zonas de clima frío. Entre un 10% y un 30% de la energía de generación de calor						
Coste de implantación	Alto. Obra muy compleja si se lleva a cabo en edificios ya construidos	Inversión unitaria €		Variable, entre los 60 y los 120 euros/m²			
Periodo de retorno	Alto. En caso de sustitución de una instalación ya existente supera los 10 años	% Anorro 10% y un 30% de las emisiones de			n 30% de las es de		
Adecuación a ESE	Muy Baja en edificios existentes. Rentabilidad muy baja. Inversión media alta en el conjunto total. Incertidumbre media en los ahorros. Otras consideraciones. Valor añadido al edificio, confort, utilización de la superficie						

Recuperadores de calor

Finalidad

Aprovechar energía en sistemas de climatización

S

Descripción de la medida

Estos sistemas se emplean para la transferencia de calor entre dos fluidos (aire, gases de combustión, etc.) aplicados en climatización permitiendo una mejora en la calidad del aire interior, IAQ en sus siglas en inglés. Los recuperadores se calculan y seleccionan de forma individual para cada aplicación y la recuperación debe ser superior al 45% de rendimiento, en las condiciones más extremas de diseño.

En el recuperador estático de placas el intercambio de calor se produce a través de una placa corrugada, al provocarse dos flujos de aire cruzados que no llegan a mezclarse. Consiste en una trama de canales cuyas paredes siempre están bañadas por aire primario en una cara y por aire secundario en la otra, con una disposición que impide la mezcla de flujos y garantiza la absoluta separación de los aires. Los rendimientos de recuperación suelen ser muy elevados, situándose entre el 60 y 70 %. Para caudales de aire no muy elevados tiene una buena relación precio/prestaciones y la ventaja adicional de carecer de elementos móviles, lo que provoca un mantenimiento mínimo.

Los recuperadores de placas son una buena opción si los conductos de impulsión y retorno están adyacentes. Si no lo están habría que estudiar lo posibilidad de recuperadores rotativos, los denominados en inglés "run around", algo más costosos. Los recuperadores rotativos son más eficientes que los anteriores, pero existe intercambio entre el aire de retorno y el de impulsión, por lo que no se pueden utilizar en edificios donde el aire de entrada debe estar totalmente libre de contaminación (centros médicos u hospitalarios, por ejemplo).

Tipo de edificio o instalación	Edificios con unidades centrales de climatización	Alcance de la aplicaciói	tratamiento de aire				
C	CUANTIFICACIÓN DE AHORROS E INVERSIONES						
Potencial de ahorro	Medio. Entre un 10% y un 30% de la energía de generación de calor						
Coste de implantación	Medio. Depende del tipo de equipos existentes	Inversión unitaria €	Variable, en función de la instalación				
Periodo de retorno	Medio. Entre 5 y 8 años	% Ahorro CO ₂	Medio - alto. Entre un 10% y un 30% de las emisiones por generación de calor				
Adecuación a ESE	Media baja. Rentabilidad variable. Inversión variable en el conjunto total. incertidumbre media en los ahorros						

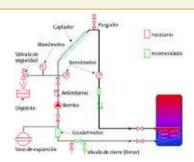
GENERADORES DE CALOR, CLIMATIZACIÓN Y AGUA CALIENTE SANITARIA

servicios públicos

Instalar paneles solares térmicos

Finalidad

Uso de energías renovables


S

Descripción de la medida

Los sistemas de energía solar térmica captan la energía de la radiación solar mediante un captador o colector por el que circula un fluido, y la transfieren a un sistema para su posterior aprovechamiento para la obtención de agua caliente sanitaria o calefacción.

El objetivo de una instalación solar es calentar agua captando la máxima radiación solar. En este sentido la inclinación y la orientación del colector solar, así como las sombras que se puedan proyectar sobre los paneles, son factores claves que determinan un correcto funcionamiento de la instalación.

La energía solar térmica está demostrando ser el sistema para producción de agua caliente más económico y ecológico de entre todos los existentes en la actualidad. El principal beneficio es la reducción de emisiones de CO2.

La producción de agua caliente sanitaria (ACS) es la principal aplicación de la energía solar térmica, debido a las bajas temperaturas de preparación y a la homogeneidad de su consumo a lo largo del año, aunque también se pueden cubrir necesidades de calefacción, climatización de piscina e incluso refrigeración.

El Código Técnico de la Edificación exige que en las nuevas edificaciones y en la rehabilitación de las existentes haya una contribución mínima de la energía solar para cubrir las necesidades energéticas de ACS.

Tipo de edificio o instalación	de agua caliente de forma			nce de la icación	ACS (Otros alcances a analizar)		
C	CUANTIFICACIÓN DE AHORROS E INVERSIONES						
Potencial de ahorro	Alto, tanto desde el punto de vista económico como de reducción de emisiones de CO2. Un 70% del consumo térmico de agua caliente						
Coste de implantación	Alto	Inversión unitaria € 900 €/m2 de colector			2 de colector		
Periodo de retorno	Alto. Más de 10 años	% Ahorro CO ₂ Alto. Un 70% de emisiones de generación de ACS					
Adecuación a ESE	Baja. Rentabilidad baja. Elevada inversión en el conjunto total. Baja incertidumbre en los ahorros. Otras consideraciones: sostenibilidad, posibilidad de aprovechamiento para refrigeración, dependencia de la zona climática						

Sustitución lámparas incandescentes por fluorescentes de bajo consumo

Finalidad

Reducción del consumo energético por sustitución de lámparas muy poco eficientes

S

Descripción de la medida

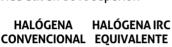
Las lámparas incandescentes utilizan menos del 10% que consumen para producir luz, el resto se pierde en forma calor.

Las lámparas fluorescentes compactas, CFL, utilizan una tecnología más eficiente alcanzando los mismos niveles de luz con una potencia hasta un 80% inferior y poseen una vida útil 15 veces superior lo que conlleva un menor coste de mantenimiento.

Las lámparas fluorescentes compactas pueden sustituir directamente a las incandescentes ya que llevan el equipo auxiliar integrado.

Tipo de edificio o instalación	Edificios con iluminación ineficiente	Alcance de la aplicació	Lámparas n incandescentes			
CUANTIFICACIÓN DE AHORROS E INVERSIONES						
Potencial de ahorro	Alto. Función del número de horas de utilización y del tipo de lámparas. Ahorros de hasta un 80% del consumo de una lámpara convencional					
Coste de implantación	Bajo. Medida de fácil implantación	Inversión unitaria €	5 - 7 €/ud			
Periodo de retorno	Bajo. Menos de 1 año	de 1 año W Ahorro CO2 Bajo debido a que el peso de la iluminación de incandescencia en edificios municipales es cada vez menor (inferior al 10%).				
Adecuación a ESE	Muy Alta. Rentabilidad muy elevada. Baja inversión en el conjunto total. Muy baja incertidumbre en los ahorros					

Sustitución de lámparas halógenas convencionales por lámparas halógenas IRC


Finalidad

Reducción del consumo energético a través del empleo de tecnologías más eficientes

S

Descripción de la medida

Las lámparas halógenas de alta eficiencia ahorran entre un 30% y un 40% de la energía que consumen las lámparas halógenas convencionales manteniendo las mismas características cromáticas y misma intensidad luminosa y poseen una vida útil un 60% superior.

	•
50 W	35 W
35 W	20 W

La instalación de estas lámparas no requiere ningún equipo especial y puede sustituir directamente a una convencional por lo que se recomienda la aplicación de esta medida de forma progresiva a medida que se fundan las lámparas instaladas.

Edificios con

Tipo de edificio o instalación	iluminación ineficiente	Alcance de la aplicació	Lámparas halógenas n convencionales	
C	CUANTIFICACIÓN DE AHORROS E INVERSIONES			
Potencial de ahorro	Alto. En función del número de horas de utilización y del tipo de lámparas. Ahorros de hasta un 40% del consumo de una lámpara halógena convencional			
Coste de implantación	Bajo. Medida de fácil implantación	Inversión unitaria €	10 €/ud	
Periodo de retorno	Bajo - Medio. El peso de la iluminación con halógenos en edificios municipales es bajo (inferior al 20%)			
Adecuación a ESE	Muy Alta. Rentabilidad muy elevada. Baja inversión en el conjunto total. Muy baja incertidumbre en los ahorros			

Sustitución de balastos electromagnéticos por balastos electrónicos en luminarias

Finalidad

Reducir el consumo energético a través del empleo de tecnologías más eficientes

S

Descripción de la medida

El balasto es el equipo auxiliar que transforma la corriente y produce el encendido en las lámparas de descarga (fluorescentes, halógenas, etc).

Se recomienda la utilización de balastos electrónicos frente a los electromagnéticos por sus muchas ventajas:

- Reducción de un 25% de la energía consumida respecto a los sistemas con balastos electromagnéticos
- Incremento de la eficacia de la lámpara

- Incremento de la vida de la lámpara hasta en un 50%
- Reducción de la carga térmica del edificio debido al menor consumo
- Factor de potencia cercano a la unidad
- Luz más agradable, sin parpadeo ni efecto estroboscópico
- Encendido instantáneo y sin encendidos fallidos

Tipo de edificio o instalación	Edificios con iluminación ineficiente	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Balastos n electromagnéticos
· ·	CUANTIFICACIÓN DE AHORROS E INVERSIONES		
Potencial de ahorro	Alto. En función de las h respecto al consumo de electromagnético		_
Coste de implantación	Medio	Inversión unitaria €	30 €/ud
Periodo de retorno	Medio. Más de 5 años	% Ahorro CO ₂	Medio - Alto. Puede alcanzar el 15 - 20% de ahorro total en emisiones de un edificio
Adecuación a ESE	Media. Rentabilidad media. Baja inversión en el conjunto total. Muy baja incertidumbre en los ahorros		

Instalar detectores de presencia en zonas de uso esporádico

Finalidad

Reducir el consumo energético con sistemas de regulación y control de la iluminación

Descripción de la medida

Los detectores de presencia, también llamados detectores de movimiento o interruptores de proximidad, sirven para conectar o desconectar la iluminación de cualquier espacio en función de la existencia o no de personas en el mismo. Con esto se logra que el control de encendido y apagado se realice automáticamente, sin que ninguna persona tenga que accionarlo, de manera que solamente permanecerá encendido un interruptor cuando realmente se requiere que la estancia esté iluminada, logrando a su vez un ahorro energético que puede a llegar a ser importante.

El Código Técnico de Edificación obliga a disponer de sistemas de control de la iluminación por detección de movimiento en las zonas de uso esporádico.

Los **temporizadores**, por su parte, desconectan automáticamente la iluminación en función de un tiempo de consigna de funcionamiento.

Ambos sistemas son recomendables en zonas de aseos, pasillos y zonas de estancia intermitente con tránsito de personas bajo o medio. Con estos dispositivos se eliminan consumos debidos a descuidos.

Tipo de edificio o instalación	Edificios en general	,	Zonas de uso n esporádico	
C	CUANTIFICACIÓN DE AHORROS E INVERSIONES			
Potencial de ahorro	Medio. Depende del tipo y uso de la instalación. 40% del consumo habitual en zonas de uso esporádico			
Coste de implantación	Medio	Inversión unitaria €	40-80 €/ud	
Periodo de retorno	Medio. De 3 a 5 años **Mahorro CO2* Bajo. En torno al 5- 10' de las emisiones debidas al consumo eléctrico			
Adecuación a Media. Rentabilidad media. Baja inversión en el conjunto total. Elevada incertidumbre en los ahorros				

Aprovechamiento de la luz natural mediante sensores de luz

Finalidad

Aprovechar los aportes naturales de luz para reducir el consumo de energía en iluminación

Descripción de la medida

Las modernas soluciones en el campo de la iluminación tienen en cuenta la aportación de luz natural en las instalaciones con la intención de ahorrar energía y a la vez costes de explotación. En los sistemas con regulación de la iluminación en función de la luz natural. los sensores miden constantemente la cantidad de luz que hay en la sala y reducen la cantidad de luz artificial producida por las lámparas que están funcionando con Equipos de Conexión Electrónicos regulables, de forma que siempre se mantiene un nivel de iluminación predefinido en la sala.

El Código Técnico de Edificación obliga a instalar sistemas de aprovechamiento de la luz exterior en la primera línea paralela de luminarias situada a una distancia inferior a 3 metros de la ventana.

La forma más adecuada de regulación consiste en la utilización de luminarias con balastos electrónicos regulables controlados por una fotocélula que hace variar la aportación de flujo luminoso emitido por las lámparas en función de la variación de la luz natural.

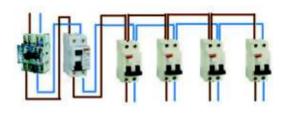
Para que la implantación de esta medida sea rentable es necesario que los edificios estén dotados con un gran aporte de luz natural y que la instalación eléctrica se encuentre distribuida por circuitos en los que sea posible la regulación.

Tipo de edificio o instalación	Edificios en general	Alcance de la aplicació	Zonas con gran aporte de luz natural	
· ·	CUANTIFICACIÓN DE AHORROS E INVERSIONES			
Potencial de ahorro	Medio. En función del aporte de luz natural en los espacios. Ahorros de hasta un 30% del consumo en iluminación			
Coste de implantación	Medio. Depende el tipo de instalación y del tipo de luminarias existentes.	Inversión unitaria €	Variable	
Periodo de retorno	Medio. De 3 a 5 años	% Ahorro CO ₂	Bajo. En torno al 5- 10% de las emisiones debidas al consumo eléctrico	
Adecuación a ESE	total en nuevas instalaciones. Incertidumbre media-baia en			

Zonificación de la iluminación

Finalidad

Iluminación del edificio sólo en las zonas y en los momentos en que se estén utilizando


Descripción de la medida

La instalación de diferentes circuitos de iluminación controlados por interruptores independientes por zonas, en función de las actividades que se desarrollan en ellas y los diferentes horarios de uso es un método básico para conseguir un menor consumo energético en la iluminación de edificios.

La aplicación de esta medida es de especial interés en salas grandes o

pasillos donde la instalación de varios pulsadores que gobiernen diferentes circuitos permite utilizar solo la parte de la iluminación necesaria para cada actividad.

Esta medida tiene un coste de implantación bajo en edificios nuevos o si se implanta aprovechando una rehabilitación pero la inversión necesaria aumenta si se aplica a edificios ya existentes.

Tipo de edificio o instalación	Edificios en general	Alcance de la aplicació	Zonas de uso esporádico
CUANTIFICACIÓN DE AHORROS E INVERSIONES			
Potencial de ahorro	Medio: Función del tipo de instalación y del uso de cada zona. Entre un 10-20% del consumo en iluminación		
Coste de implantación	Bajo en edificios nuevos o en reformas. Medio si es necesario realizar un nuevo cableado		10 €/pulsador + el cableado necesario
Periodo de retorno	Medio. De 3 a 5 años	CO ₂	Bajo. En torno al 5% de las emisiones debidas al consumo eléctrico
Adecuación a ESE	Media. Rentabilidad media. Baja inversión en el conjunto total en nuevos edificios. Incertidumbre relativamente elevada en los ahorros		

Iluminación con lámparas LED

Finalidad

Utilización de tecnologías eficientes, que proporcionan valores altos de iluminación por vatio consumido

Descripción de la medida

La luz en un LED es emitida por un objeto sólido, en lugar de un gas como es el caso de los tubos fluorescentes o lámparas de descarga de alta intensidad. El LED (Lighting Emitting Diode - Diodo emisor de Luz) es un diodo semiconductor que al ser atravesado por una corriente eléctrica emite luz. La longitud de onda de la luz emitida y por tanto el color depende básicamente de la composición química del material semiconductor utilizado. Cuando la corriente atraviesa el diodo se libera energía en forma de fotones, es decir, luz.

La degradación de los LED es gradual a lo largo de su vida. Se considera que es a las 50.000 horas, cuando su flujo decae por debajo del 70% de la inicial, lo que significa aproximadamente 6 años en una aplicación de 24 horas diarias 365 días/año. Esto permite una reducción enorme de costes de mantenimiento.

Asimismo, por su naturaleza el encendido se produce instantáneamente al 100% de su intensidad sin parpadeos ni periodos de arranque. A diferencia de otros sistemas no se degrada por el número de encendidos. Por otra parte los dispositivos LED son menos contaminantes ya que no contienen mercurio.

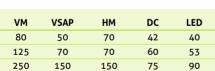
Los LED presentan una alta eficacia en ambientes fríos, y son capaces de encenderse a bajas temperaturas (hasta -40°C).

Tipo de edificio o instalación	Edificios en general	Alcance de la aplicació	Todo tipo de n lámparas		
· ·	CUANTIFICACIÓN DE AHORROS E INVERSIONES				
Potencial de ahorro	Alto. Hasta un 40% sobre lámparas fluorescentes o de descarga				
Coste de implantación	Alto. Sin embargo es una tecnología emergente, y es de esperar que en el corto plazo los precios sufran una importante bajada		Puede llegar a ser 10 veces superior al coste de una instalación convencional		
Periodo de retorno	Alto. Normalmente superior a 5 años. La rápida evolución de los sistemas LED está abaratando su coste y reduciendo su PR	% Ahorro CO ₂	Alto. En función del edificio, puede superar el 30% del total de las emisiones		
Adecuación a ESE	Media-baja. Rentabilidad media baja. Inversión media en el conjunto total. Baja incertidumbre en los ahorros. Incertidumbre con la vida útil				

Sustitución de lámparas de vapor de mercurio en iluminación exterior

Finalidad

Sustitución de lámparas de descarga de baja eficiencia


S

Descripción de la medida

Una de las principales maneras de reducir el consumo energético en el alumbrado exterior es utilizar lámparas que combinen la alta eficiencia energética con la alta eficiencia

luminosa. Las lámparas más utilizadas en alumbrado público son las de descarga. Las lámparas de vapor de mercurio son las más habituales, debido a su bajo coste y a su buena calidad cromática. Sin embargo, son lámparas de muy baja eficacia luminosa, alrededor de 50 lm/W.

La sustitución de las lámparas de vapor de mercurio (VM) por otras de vapor de sodio de alta presión (VSAP), halogenuros metálicos (HM), lámparas de descarga compactas (DC) o las más modernas LED con valores de luminosidad equivalente puede suponer importantes ahorros energéticos. A continuación se presenta la equivalencia en potencias en vatios para distintos tipos de lámparas.

Todas tienen ventajas e inconvenientes: las de vapor de sodio a alta presión son económicas y las de mayor vida, aunque su calidad cromática es inferior (color anaranjado). Las

lámparas de halogenuros presentan una calidad cromática excelente, pero son las más costosas v tienen una menor vida útil. Las lámparas de descarga compactas son económicas, de buena calidad cromática y de fácil instalación (no requieren equipo auxiliar), aunque no son compatibles con todas las luminarias, ni se recomienda su uso con sistemas electrónicos de control. Estas últimas tampoco se pueden regular. Las luminarias LED destacan por su vida útil y bajo consumo, aunque en la actualidad requieren inversiones elevadas. Además del cambio de lámparas, el alumbrado exterior permite otro tipo de actuaciones como reguladores, estabilizadores, controles de encendido-apagado... que

habría que valorar en cada caso, dependiendo de las lámparas a utilizar y de las condiciones particulares de cada municipio.

Tipo de edificio o instalación	Alumbrado exterior	Alcance de la aplicació	Lámparas de descarga de vapor de mercurio	
CUANTIFICACIÓN DE AHORROS E INVERSIONES				
Potencial de ahorro	Alto. Hasta un 40 - 50%			
Coste de implantación	Bajo. Medida de fácil implantación	Inversion Unitaria £	Entre 25 y 60 € por lámpara, en función de tipo y potencia	
Periodo de retorno	Bajo. Inferior a 3 años	% Ahorro CO ₂	Alto. Hasta un 40 - 50%	
Adecuación a ESE	Media. Rentabilidad media. Baja inversión en el conjunto total. Elevada incertidumbre en los ahorros			

Instalación de sistemas de control y regulación en alumbrado público

Finalidad

Reducir el consumo del alumbrado público por la instalación de sistemas de control del encendido-apagado y de regulación de la iluminación

Descripción de la medida

La gestión del encendido-apagado del alumbrado público, y su regulación durante el tiempo que está encendido es fundamental.

Para el primer aspecto, existen en el mercado sistemas que consiguen que el alumbrado público se ponga en marcha cuando la luz natural no es suficiente, y se apague cuando al amanecer, hav niveles adecuados de iluminación. Dentro de estos sistemas se encuentran las células fotoeléctricas, que controlan el encendido-apagado por los niveles de iluminación o los relojes astronómicos que controlan el encendido según las horas de orto y ocaso, previamente introducidas en el interruptor para el lugar concreto de instalación.

En cuanto a la regulación durante el encendido, hay aparatos que permiten reducir el nivel de iluminación (y el consumo energético) a partir de una hora que fijemos, para la cual los niveles de iluminación demandados son menores. Estos aparatos pueden regular punto por punto (caso de los balastos), o bien instalarse en la cabecera de línea (caso de los reguladores).

Además, estos aparatos pueden disponer de una función de regulación de la tensión, por la que modulan la corriente eléctrica que alimenta al alumbrado para que sea la más adecuada para las lámparas, aumentando significativamente la duración de éstas.

Fuente: www.orbis.es

Tipo de edificio o instalación	Alumbrado exterior	Alcance de la aplicació	Sistemas de regulación y control
CUANTIFICACIÓN DE AHORROS E INVERSIONES			RSIONES
Potencial de ahorro	Bajo. Hasta un 5% en el caso de los controladores de encendido- apagado / Alto. Hasta un 30% en el caso de los reguladores		
Coste de implantación	Bajo. Medida de fácil implantación	Inversión	80€ para los controladores de encendido-apagado. 80€/balasto y 2.000- 5.000€/regulador
Periodo de retorno	Medio. Inferior a 5 años	% Ahorro CO ₂	Alto. Hasta un 30%
Adecuación a FSF	Muy Alta. Rentabilidad alta. Muy baja incertidumbre en los		

Instalar perlizadores en grifos

Finalidad

Mecanismos de control sobre los consumos

Descripción de la medida

Una de las soluciones que hay para ahorrar agua y energía, consiste en la colocación de un perlizador en la salida del agua en grifos. Estos dispositivos se enroscan en la salida del grifo reduciendo el caudal de agua, son compatibles con la mayoría de los grifos ya que están disponibles en diferentes tamaños y diversos tipos de rosca.

Entre las principales ventajas de estos equipos se encuentran:

- Son de fácil instalación
- Son anticalcáreos y no se obstruyen
- Ahorro de agua
- Ahorro energético debido a bombeo y la derivada del calentamiento del agua

El uso de perlizadores permite ahorros del 50% de agua.

Tipo de edificio o instalación	Edificios en general	Alcance de la aplicació	Grifos de lavahos
CUANTIFICACIÓN DE AHORROS E INVERSIONES			RSIONES
Potencial de ahorro	Medio. 50% en bombeo calentamiento	o. 30% del co	onsumo debido al
Coste de implantación	Bajo. Medida de fácil implantación	Inversión unitaria €	4€/perlizador
Periodo de retorno	Bajo. Menos de 1 año	% Ahorro CO ₂	Bajo. Ahorros ligados a la reducción del bombeo y del calentamiento de ACS
Adecuación a ESE	Alta. Rentabilidad alta. Muy Baja inversión en el conjunto total. Incertidumbre media en los ahorros		

Grifos temporizados

Finalidad

Reducción del consumo energético para producción de ACS

Descripción de la medida

Los equipos o grifos temporizados vienen a cubrir una de las mayores preocupaciones: el exceso de consumo por el olvido de cerrar la grifería.

En el mercado hay infinidad de fabricantes que ofrecen soluciones muy variadas. A la hora de elegir un grifo de estas características, habrá que tener en consideración, los siguientes puntos:

- Caudal regulable, o pre-ajustable.
- Incorporación del perlizador en la boca de salida.
- Temporización ajustada a la demanda (6" en lavabos y 20-25" en duchas).
- Cabezales intercambiables, anticalcáreos.

•	Cualquier punto de consumo de ACS	Alcance de la aplicació	Ahorro en el consumo de ACS
C	CUANTIFICACIÓN DE AHORROS E INVERSIONES		
Potencial de ahorro	Alto. Hasta el 20-40% de	l consumo en	energía térmica
Coste de implantación	Bajo	Inversión unitaria €	70 €/equipo
Periodo de retorno	Bajo. Menos de 1 año	% Ahorro CO ₂	Alto. Hasta el 20-40% de las emisiones debidas a la generación de ACS.

Control del *stand by*. Uso de regletas múltiples con interruptor o enchufe programable

Finalidad

Sistemas de regulación y control

Descripción de la medida

Los equipos ofimáticas y algunos electrodomésticos siguen consumiendo energía cuando se encuentran en posición de *stand by* e incluso aunque estén apagados por el hecho de estar conectados a la red.

Para evitar estos consumos de energía innecesarios durante los periodos de inactividad, nocturnos y festivos, es necesario desconectar los equipos por completo de la red. El consumo en modo de espera puede llegar al 15% del consumo en condiciones normales de funcionamiento.

Se recomienda conectar todos los equipos de una zona de trabajo en una regleta múltiple con interruptor, de forma que se puedan apagar todos a la vez al finalizar la jornada laboral. De la misma forma, los equipos como televisores, DVD's, Hi-Fi... deberán quedar apa-

gados por completo cuando no vayan a ser utilizados durante un largo periodo.

Una mejor alternativa para evitar olvidos debido a la necesidad de un apagado manual de las regletas consiste en el uso de enchufes programables que permiten el apagado y encendido automático de todos los equipos conectados a ellos según un horario preestablecido por el usuario.

También son adecuadas las regletas protectoras que mediante una conexión USB apagan o encienden todos los periféricos conectados al ordenador.

Tipo de edificio o instalación	Edificios en general	Alcance de la aplicació	Fauinos ofimáticos	
CUANTIFICACIÓN DE AHORROS E INVERSIONES				
Potencial de ahorro	Bajo. En torno al 15% d conectados	el consumo d	de los equipos	
Coste de implantación	Bajo. Medida de fácil implantación	Inversion unitaria £	Entre 5-20 €/ud en función del tipo de regleta	
Periodo de retorno	Bajo. Menos de 1 año	% Anorro	Bajo. Un 15% de las emisiones de los equipos conectados	
Adecuación a ESE	Muy Alta. Rentabilidad muy elevada. Muy baja inversión en el conjunto total. Baja incertidumbre en los aborros			

Instalar paneles solares fotovoltaicos en las cubiertas de los edificios

Finalidad

Uso de energías renovables

Descripción de la medida

La energía solar fotovoltaica es un tipo de energía renovable obtenida directamente de los rayos del sol gracias al efecto fotoeléctrico de un determinado dispositivo; normalmente una lámina metálica semiconductora.

Este tipo de instalación está condicionada por diversos factores:

- Disponibilidad de una cubierta resistente y con ausencia de sombras.
- Zona geográfica con un mínimo número de horas de insolación.
- Generación discontinua dependiente de la climatología.
- Mantenimiento de los paneles.
- Alta inversión necesaria y alto periodo de retorno en función de la estabilidad de las subvenciones.

Su principal ventaja es que ayuda a reducir las emisiones de CO₂ y desde el punto de vista económico es un ingreso sostenido en el tiempo siendo la vida media de los paneles alrededor de los 30 años. El Código Técnico de la Edificación

exige que se incorporen sistemas solares fotovoltaicos destinados para uso propio o conectados a la red en determinados edificios de nueva construcción o que se rehabiliten, en función de su uso y volumen (en edificios administrativos a partir de 4.000 m² construidos).

Recientemente se ha aprobado la regulación del "balance neto" que permite la instalación de energía solar fotovoltaica que se consume en suma con la red convencional, donde se puede verter la energía solar producida cuando se esté generando más de lo que se consume. Este concepto prevé realizar un análisis anual de lo consumido (comprado de la red) con lo generado (aportado a la red) para sólo pagar por la diferencia.

•	Edificios en zonas climáticas favorables y con cubiertas adecuadas	Alcance de la aplicación	Cubiertas de los edificios
---	---	-----------------------------	-------------------------------

CUANTIFICACIÓN DE AHORROS E INVERSIONES					
Potencial de ahorro	Reducción de emisiones de CO ₂ y del gasto en electricidad				
Coste de implantación	Alto Inversión unitaria € 4000 €/kWpico				
Periodo de retorno	Alto. Más de 5 años **Mahorro CO2** 100% en la energía eléctrica obtenida o los paneles				
Adecuación a ESE	Media. Rentabilidad variable. Elevada inversión en el conjunto total. Muy baja incertidumbre en los ahorros/ ingresos. Otras consideraciones: complicaciones administrativas e inseguridad jurídica en venta a red				

Instalar sistemas de cogeneración

Finalidad

Reducción de la demanda energética

S

Descripción de la medida

En los edificios, se puede producir energía eléctrica y térmica mediante la "microcogeneración", que se basa en utilizar el calor que se produce al convertir la energía de un combustible en electricidad, a su vez como fuente de energía.

La cogeneración es la producción simultánea, mediante el correspondiente equipo, de energía eléctrica, o mecánica y de calor, que es aprovechado en proceso. Una parte de la electricidad producida debe ser consumida por el usuario de la planta.

Los equipos de recuperación y transformación de calor en energía térmica aprovechable en el proceso (calderas de recuperación de gases de escape, intercambiadores de calor), y de electricidad deben conectarse en paralelo con los sistemas convencionales de la instalación, de tal manera que la parte de las demandas de energía eléctrica y térmica, no satisfechas por estos equipos, se aporte con las instalaciones convencionales.

El tipo de combustible empleado en los motores puede ser gas natural, propano, biogas o gasóleo. La opción más viable es cogenerar con un motor alternativo, a gas natural, y aprovechar los gases de escape en una caldera de recuperación para generar vapor a presión.

El ahorro potencial en cogeneración no depende del consumo de electricidad ni del consumo de combustible por separado, sino de la combinación de ambos.

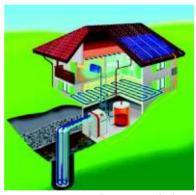
Tipo de edificio o instalación	Cualquier edificio con demanda térmica constante y elevada	Alcance de la aplicació	1 7 0	
CUANTIFICACIÓN DE AHORROS E INVERSIONES				
Potencial de ahorro	Alto. Variable en función del tipo de demanda térmica del proceso productivo			
Coste de implantación	Alto	2.600 €/kW instalado		
Periodo de retorno	Medio Alrededor de 5-8 años	% Ahorro CO ₂	Alto	

Instalación de sistemas de energía geotérmica

Finalidad

Uso de energías renovables

S


Descripción de la medida

La energía geotérmica es la que aprovecha la energía contenida en el interior de la tierra, a una profundidad variable, para climatizar edificios.

El principio se basa en el hecho de que a cierta profundidad, la temperatura de la Tierra permanece invariable, en torno a los 18-20°C, por lo que mediante un sistema de bomba de calor geotérmica se puede calentar el edificio en invierno o refrigerarlo en verano.

La forma de acceder a la energía contenida en el interior de la Tierra es mediante perforaciones de distinta profundidad y características, que se conectarán con el equipo instalado en el interior del edificio donde se instale.

Este tipo de instalación está condicionada por diversos factores, entre los que destaca el terreno sobre el que se asiente el edificio y si estamos tratando con obra nueva o una reforma.

Fuente: www.refryel.com

Tipo de edificio o instalación	Edificios sobre terrenos con potencial geotérmico, con necesidades de climatización		Instalación de n climatización	
CUANTIFICACIÓN DE AHORROS E INVERSIONES				
Potencial de ahorro	Medio. Hasta el 75% de energía. Se elimina el consumo de energía térmica, a cambio de un consumo de energía eléctrica para el funcionamiento de la bomba geotérmica			
Coste de implantación	Alto Inversión unitaria € 2.000 €/kW Alto. Más de 5 años % Ahorro CO ₂ En torno al 75%			
Periodo de retorno				
Adecuación a ESE	Media. Rentabilidad variable. Elevada inversión en el conjunto total			

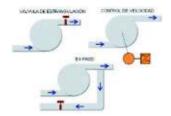
Variadores de velocidad en motores

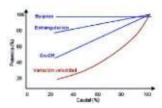
Finalidad

Reducción de la carga en motores

S

Descripción de la medida


Tradicionalmente, los motores funcionan a una velocidad constante, consiguiendo la disminución del caudal necesaria para cada proceso mediante la utilización de una válvula de estrangulamiento de paso, disminuyendo el caudal pero no el consumo.


Es por esto por lo que es mucho más eficiente regular el flujo controlando la velocidad de la bomba, con lo que se suministra solo la energía necesaria para el flujo demandado en cada momento.

Por sus características, si se regula el caudal de los motores de par variable (ventiladores o bombas) variando la velocidad, la potencia requerida por el accionamiento disminuye en una relación cúbica, por lo que reducir la velocidad a la mitad supone un ahorro del 75%.

En otro tipo de motores como los de par constante, la relación entre potencia y velocidad es directamente proporcional, por lo que los ahorros con variadores de velocidad no son tan elevados.

Los variadores de velocidad también permiten el ahorro de consumo en el arranque. Cuando se arranca con variador de velocidad, el arranque será mucho más suave que el arranque directo, que puede llegar a demandar 8 veces la potencia nominal de la bomba.

Tipo de edificio o instalación	Cualquier motor electromecánico	Alcance de la aplicació	Motores			
C	CUANTIFICACIÓN DE AHORROS E INVERSIONES					
Potencial de ahorro	Bajo. Hasta un 30% del consumo del motor, dependiendo del uso y de las características del mismo					
Coste de implantación	Medio - alto	Inversión unitaria €	Depende del tipo y potencia del motor			
Periodo de retorno	Alto	% Ahorro CO ₂	Alto. Hasta un 30% de las emisiones debidas al consumo en motores			
Adecuación a ESE	Variable. Rentabilidad variable. Inversión media alta en el conjunto total. Baja incertidumbre en los ahorros					

Motores de alta eficiencia

Finalidad

Mejora de la eficiencia en motores

S

Descripción de la medida

Frente a los convencionales, los motores de alta eficiencia (HEM-High Efficiency Motors) incluyen ventiladores más pequeños y eficientes, y tienen cargas magnéticas menores, por lo que suelen ser más silenciosos. También tienen un mejor factor de potencia, con lo se contribuye al ahorro a través de una reducción en la demanda máxima de kVA. Algunos de estos motores incluyen variadores de velocidad, con lo que todavía aumentan más las posibilidades de ahorro.

Muchos motores -sobre todo los grandes o de tipos especiales- se reparan varias veces durante su vida en servicio. Sin embargo, la sustitución del motor da la oportunidad de adquirir uno con una mejora de un 3% en el rendimiento. Si se tiene en cuenta que una reparación (un rebobinado) supone una disminución de aproximadamente un 1% en el rendimiento, la diferencia entre reparar y sustituir está en un aumento del rendimiento en un 4%. El aho-

rro energético que esto supone es un factor que hay que tener en cuenta a la hora de decidir si sustituir o reparar un motor (aunque la última opción tenga un coste económico menor).

También se puede mejorar el ahorro si se sustituye un motor por otro de menor potencia nominal. Hay que tener en cuenta que los motores se diseñan para obtener el rendimiento máximo a un 75% de su capacidad de carga, y entre un 50% y un 100% de carga las variaciones en rendimiento son mínimas. Sólo en caso de estar trabajando a un 25% de carga o menos resulta rentable sustituir un motor por otro de menos potencia.

www.directindustry.com

Tipo de ed o instalac		Cualquier motor electromecánico	Alcance de la aplicació	Motores	
	CUANTIFICACIÓN DE AHORROS E INVERSIONES				
Potencia ahorro		Bajo en edificios, medio en sistemas de bombeo. De un 2 un 5% del consumo de un motor convencional			
Coste d implanta		Alto, excepto si es reemplazo del motor debido a fin de su vida útil	Depende mucho del tipo y potencia del motor		
Periodo retorn		Alto % Ahorro CO ₂ Bajo. Hasta un 5º las emisiones de consumo en mot			
Adecuaci ESE	ón a	Variable. Rentabilidad variable en función del uso y el momento. Elevada inversión en el conjunto total. Muy baja incertidumbre en los ahorros			

Otras posibilidades de ahorro en motores

Finalidad

Reducción de la carga en motores

Descripción de la medida

Otras posibilidades de ahorro energético en motores reduciendo la carga son:

- Los motores de velocidad múltiple son una alternativa de coste inferior a los variadores de velocidad en aplicaciones donde hay de 2 a 4 condiciones de operación distintas. Hay que tener en cuenta que las relaciones de velocidad suelen ser 2:1 o 3:2 (3.000/1.500 rpm; 1.000/500 rpm; 1.500/1.000 rpm, etc.).
- Los arrancadores suaves reducen el pico de intensidad (y por lo tanto, la energía consumida) en el arranque del motor. Esto reduce además el desgaste mecánico en arrancadas y paradas, por lo que se puede ahorrar energía parando más a menudo el motor, sin que ello suponga una reducción de su vida útil.
- Conectar los bornes del motor en estrella reduce el voltaje en las bobinas a un 58%, y el motor proporciona un tercio del par. Cuando el motor funciona bajo cargas debajo del 40 - 45% de la nominal se pueden conseguir ahorros energéticos interesantes con este método.
- Los controladores de motores se conectan entre el motor y la alimentación. Por medio de tiristores o triacs cortan la onda eléctrica reduciendo así el voltaje y la corriente. Esta técnica ahorra energía en aplicaciones con muchas horas de funcionamiento, y con cargas muy por debajo de la nominal (35% o inferiores).

Tipo de edificio o instalación	Sistemas de bombeo o equipos de ventilación	Alcance de la aplicación	Motores		
C	CUANTIFICACIÓN DE AHORROS E INVERSIONES				
Potencial de ahorro	Bajo				
Coste de implantación	Depende de la medida	Inversión unitaria €	-		
Periodo de retorno	Alto	% Ahorro CO ₂	-		
Adecuación a ESE	Dependiente de la medida				

Instalar baterías de condensadores para reducir la energía reactiva

Finalidad

Reducir pérdidas eléctricas en instalaciones

Descripción de la medida

Las batería de condensadores reducen la energía reactiva generada por las instalaciones, en particular es generada por la presencia de cargas como motores o lámparas de descarga.

La demanda de energía reactiva presenta varios inconvenientes:

- Aumento de la energía aparente y por tanto disminución de la potencia disponible.
- Aumento de las caídas de tensión.
- Incremento en la temperatura de los conductores con el consiguiente aumento de pérdidas por efecto Joule
- Incremento de potencia de trabajo de los transformadores disminuyendo su vida útil

 Penalización económica en la factura para factores de potencia por debajo de 0,95

Existen baterías de condensadores de diferentes capacidades, adecuado para cada tipo de instalación y potencia. Los equipos más modernos presentan diferentes etapas que entran en funcionamiento de forma automática y progresiva según la demanda de la instalación.

Aunque esta medida no conlleva ahorro energético, consigue ahorros económicos importantes en instalaciones que presentan energía reactiva y aumenta la vida útil de las instalaciones.

Acometidas con

Tipo de edificio o instalación	instalaciones con penalización por reactiva	Alcance de la aplicació	penalización por n energía reactiva en sus facturas	
C	CUANTIFICACIÓN DE AHORROS E INVERSIONES			
Potencial de ahorro	La penalización económica por energía reactiva incurrida la factura eléctrica. El 100% del gasto económico debido la penalización por reactiva			
Coste de implantaciónMedio. En función del tipo de instalaciónInversión unitaria €			Depende del tipo y potencia de la batería necesaria	
Periodo de retorno	Bajo. Menos de 3 años	% Ahorro CO ₂	-	

Todo tipo de

Optimización de la contratación de los suministros eléctricos

Finalidad

Gestión energética

Descripción de la medida

Realizar un control continuo de las facturas eléctricas y su adecuación a las condiciones de consumo y de mercado. Aunque no supone un ahorro energético, si tiene un peso importante desde el punto de vista económico. Una contratación incorrecta se traduce en:

- Tarifas eléctricas más caras
- Incorrecta contratación de la potencia
- Valores de energía reactiva que penalizan la factura
- Contratos no actualizados en función de nuevas cargas que se añaden o que se eliminan.

La contratación de una empresa que realice este seguimiento no supone un coste elevado, y los ahorros que se pueden conseguir son importantes. Dentro de las tareas que se deberían llevar a cabo está:

- Adecuación de las tarifas a la reglamentación vigente para evitar penalizaciones.
- Mantenimiento de las potencias contratadas de acuerdo con las demandas reales de cada contrato, actualizándolas en caso de incorporación o eliminación de instalaciones en un contrato.
- Compensación de la energía reactiva.
- Seguimiento de los consumos, identificando pautas anormales de consumo que puedan identificar fallos en equipos o en la red.
- Posibilidad de negociación de mejores tarifas en el mercado libre.

Tipo de edificio o instalación	Todo tipo de instalaciones	Alcance de la aplicación	Contratos eléctricos			
C	CUANTIFICACIÓN DE AHORROS E INVERSIONES					
Potencial de ahorro	Medio. En función de las condiciones de contratación. Hasta un 15% de ahorro económico en la facturación eléctrica					
Coste de implantación	Bajo	Inversión unitaria €	-			
Periodo de retorno	Bajo	% Ahorro CO ₂	-			

Utilización de herramientas informáticas para la monitorización de consumos

Finalidad

Mejorar la gestión energética

Descripción de la medida

El seguimiento del consumo en el tiempo permite detectar anomalías y limitar consumos indeseados. Existen aplicaciones informáticas que permiten la monitorización de los consumos de energía, como la herramienta para la Gestión de la Energía y el Agua (GEA) desarrollada por la FEMP en 2008.

Entre los beneficios que se obtienen con la monitorización de consumos se pueden destacar:

 Realización de un control continuado de los consumos y parámetros eléctricos que permitirá detectar excesos de potencia, factores de potencia penalizados o consumos anómalos según la franja horaria.

- Seguimiento continuado de las curvas de carga que permita ajustar la potencia contratada a la realmente demandada por la instalación.
- Identificar anomalías en el funcionamiento de las instalaciones contribuyendo a la reducción de averías
- Identificar y cuantificar cómo afectan las medidas de eficiencia que se implanten en el consumo total.

Tipo de edificio o instalación	Edificios en general	Alcance de la aplicació	Editicios		
CUANTIFICACIÓN DE AHORROS E INVERSIONES					
Potencial de ahorro	Medio				
Coste de implantación	Medio		Estará en términos del tiempo de instalación y aprendizaje del uso de la herramienta		
Periodo de retorno	Medio	% Ahorro CO ₂	No cuantificable		

Mantenimiento adecuado de las instalaciones

Finalidad

Optimización de la eficiencia energética y obtención de ahorros

Descripción de la medida

Un correcto mantenimiento de los equipos e instalaciones es fundamental para conseguir ahorros y mejoras en la eficiencia energética.

Entre los principales puntos a tener en cuenta se encuentran:

- Revisión de calderas y equipos de combustión regularmente.
- Revisión periódica de sistemas de bombeo de agua.
- Detección de fugas de agua en conducciones.
- Revisión de instalaciones para detectar problemas o defectos de aislamiento.
- Limpieza de lámparas y luminarias regularmente y reemplazo según los intervalos recomendados por el fabricante.
- Verificación regular del correcto funcionamiento de los controles y termostatos de los diferentes equipos.
- Sustitución de los filtros de los conductos de climatización según las recomendaciones de los fabricantes.

Respecto a las instalaciones térmicas, la reglamentación vigente (RITE) señala que el titular o usuario de las instalaciones térmicas es el responsable en lo que se refiere a su uso y mantenimiento, concretamente, de que se realicen las siguientes acciones:

- Encargar a una empresa mantenedora la realización del mantenimiento de la instalación térmica
- Realizar las inspecciones obligatorias
- 3. Conservar la documentación

Tipo de edificio o instalación	Todo tipo de instalaciones	Alcance de la aplicació	Todos los aquinos		
CUANTIFICACIÓN DE AHORROS E INVERSIONES					
Potencial de ahorro	Mantenimiento de sistemas, equipos e instalaciones en estado óptimo de funcionamiento. Hasta un 10% de ahorro frente a un edificio con mantenimiento deficiente				
Coste de implantación	Bajo		Depende mucho del tamaño del edificio y sus instalaciones		
Periodo de retorno	Bajo. Menos de 2 años	% Anorro	Los ahorros en emisiones pueden alcanzar el 10%		

Realización de auditorías energéticas

Finalidad

Conocimiento de la situación energética /consumos y demanda) de un edificio o instalación

Descripción de la medida

La realización de auditorías energéticas permite conocer en detalle los equipos y estado de las instalaciones y proponer actuaciones para mejorar la eficiencia energética y obtener ahorros energéticos y económicos.

Los principales objetivos de una auditoría energética son:

- Conocer la situación energética actual tanto referente a consumos energéticos como a condiciones de contratación.
- Inventariar los principales equipos e instalaciones.

- Realizar mediciones y registros de los principales parámetros eléctricos, térmicos y de confort.
- Analizar las posibilidades de optimización del suministro de combustible y de energía eléctrica.
- Proponer mejoras y realizar su evaluación técnica y económica.

Se recomienda realizar auditorías energéticas en los edificios comenzando por aquellos que presenten consumos energéticos altos y los que posean instalaciones y equipos obsoletos o donde se tenga previsto una reforma significativa.

Tipo de edificio o instalación	Todo tipo de instalaciones	Alcance de la aplicació	Industria adminus
C	CUANTIFICACIÓN DE AHO	RROS E INVI	ERSIONES
Potencial de ahorro	Una auditoría energética no ahorra. Ayuda a identificar puntos de mejora y establecer prioridades de actuación		
Coste de implantación	Bajo - Medio	Inversión unitaria €	Los costes reconocidos por el IDAE para edificios de uso terciario en función de la superficie (S) en m² son: 1.000 <s<10.000: 0,8="" 1,2="" 10.000<s<100.000:="" m²="" m²<="" th=""></s<10.000:>
Periodo de retorno	Si se acometen las medidas de mejora que se proponen, el coste de la auditoría aumenta el período de retorno en menos de un año	% Ahorro CO ₂	-
Adecuación a ESE	Alta. Imprescindible para estudiar la viabilidad de un contrato ESE y diseñarlo adecuadamente		

Instalar sistemas de telegestión energética en los edificios

Mejora de la gestión energética de un edificio o instalación

Descripción de la medida

Los sistemas de telegestión energética son aplicaciones informáticas que controlan y programan el funcionamiento de las diferentes instalaciones de los edificios. Los principales controles se refieren a:

- Climatización
- Ventilación
- Iluminación

Estos sistemas incorporan sondas de medición de los parámetros a controlar y permiten regular el nivel y horario de funcionamiento de los sistemas según los parámetros de consigna introducidos. Estos sistemas permiten un importante ahorro energético al reducir y controlar los consumos mediante programaciones horarias y control de la temperatura.

Existen en el mercado desde aplicaciones sencillas que controlan parámetros globales a sistemas que gestionan el funcionamiento de los diferentes sistemas de forma independiente zona por zona dependiendo de parámetros como la ocupación real o el nivel de iluminación.

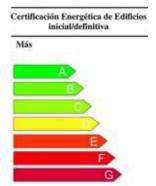
Fuente: www.regaber.com

Tipo de edificio o instalación	Edificios en general		Iluminación y climatización	
CUANTIFICACIÓN DE AHORROS E INVERSIONES				
Potencial de ahorro	Es complejo cuantificar el ahorro en los sistemas de mejora de gestión energética, ya que en estos casos se abordan dos cuestiones: eficiencia energética y confort. En ocasiones se identifican necesidades de mayor consumo para mejorar un confort deficiente. Lo que estos sistemas aseguran es que la solución adoptada será la más eficiente, y que en muchos casos esto supondrá un ahorro frente a la situación anterior; sin embargo, existirán situaciones donde la combinación de confort y eficiencia energética suponga un consumo mayor			
Periodo de retorno	consideraciones: externalización de la gestión favorecedora			

Obtener la calificación energética de los edificios existentes

Finalidad

Conocimiento (y calificación) de los consumos energéticos de un edificio en relación con un estándar


Descripción de la medida

La Calificación energética de los edificios es una exigencia derivada de la Directiva 2002/91/CE. Esta Directiva se transpone parcialmente a través del Real Decreto 47/2007.

En la actualidad, se encuentran obligados a la Calificación energética, los edificios de nueva construcción así como los que sufran reformas importantes. Asimismo, existe obligatoriedad para los edificios de pública concurrencia de la Administración General del Estado, de más de 1000 m2, la obtención de la Calificación Energética de sus edificios existentes y exponerla, como medida ejemplarizante en un lugar visible.

A falta de una metodología de calificación energética exclusiva para edificios existentes, la obligación no es efectiva aún.

La Calificación energética de edificios se realiza mediante dos programas informáticos, LIDER y CALE-NER, en los que se simula el comportamiento de los edificios según los materiales de su envolvente y sus instalaciones de iluminación, climatización, agua caliente sanitaria y energías renovables. El programa calcula las necesidades de energía a lo largo de todo el año según su situación geográfica y asigna una letra (A, B, C, etc.) según su eficiencia en comparación con un "edificio tipo" de características similares.

Tipo de edificio o instalación

Edificios en general

Alcance de la aplicación Edificios nuevos y edificios existentes de pública concurrencia de la Administración General del estado

CUANTIFICACIÓN DE AHORROS E INVERSIONES

Potencial de ahorro

Es importante obtener una buena calificación energética en un edificio. Evidentemente, obtener una calificación A o B supone un mayor coste en el proceso constructivo. Sin embrago, este incremento se va a ver amortizado rápidamente por unos consumos más reducidos a lo largo de la vida del edificio

Buenas prácticas de consumo energético entre los usuarios

Finalidad

Mejora de la utilización de instalaciones y sistemas

Descripción de la medida

La colaboración activa y la concienciación de los empleados y usuarios son esenciales para poner en marcha iniciativas de ahorro energético y de un uso eficiente de la energía.

La información y sensibilización de los usuarios del edificio es una herramienta importante para garantizar una correcta implantación de un plan de mejora de la gestión energética.

Que un plan de mejora de los resultados esperados depende principalmente de:

- El correcto uso de los sistemas de iluminación, climatización y equipos eléctricos diversos.
- El cambio en los hábitos de consumo de los usuarios

Ejemplo de buenas prácticas a comunicar a los empleados

- No encender las luces si no es estrictamente necesario.
- Utilizar el encendido y apagado por zonas y aprovechar al máximo la luz natural
- Apagar las luces cuando no se estén usando, aunque sean periodos
- Aprovechar al máximo la ventilación natural cuando sea posible
- Apagar los sistemas de climatización cuando las salas están vacías.
- Programar los termostatos del aire acondicionado y la calefacción a las temperaturas recomendadas.

Tipo de edificio Edificios en general

Alcance de la aplicación

Toda la organización

Sistema de gestión energética

Finalidad

Mejora de la gestión energética

Descripción de la medida

Podemos definir la gestión energética como el conjunto de acciones que se realizan para obtener el mayor rendimiento posible de la energía consumida. Por ello, la gestión energética comprenderá el conocimiento y control de los consumos energéticos de todas las unidades de consumo. El objetivo último es el uso de los recursos energéticos de manera racional sin que por ello se mermen las prestaciones de los distintos servicios prestados.

Los pasos a seguir para la implantación de un sistema de gestión energético (SGE) van desde el compromiso de la dirección hasta la participación de los empleados v ciudadanos.

El SGE requiere al menos los siguientes puntos:

- Compromiso institucional
- Definición de una comisión energética encargada de la gestión, y un gestor energético, que será el responsable ejecutivo con las siguientes tareas principales:
 - seguimiento y el control del consumo y los gastos energéticos,
 - proponer y efectuar el seguimiento de actuaciones de ahorro y eficiencia energética,
 - elaborar programas de mantenimiento preventivo,

- coordinar y colaborar con los departamentos y las áreas relacionadas con el gasto energético.
- Realización de una auditoría energética, para diagnosticar la situación de todas las unidades de consumo.
- Planificación de actuaciones de mejora de acuerdo con unos objetivos realistas.
- Implantación de las medidas de mejora seleccionadas
- Seguimiento y evaluación de las actuaciones realizadas
- En función de los resultados. aplicación de las mejoras en instalaciones similares, acometer segunda fase de mejoras, etc. (mejora continua)
- Difusión, sensibilización y formación
- Implantación de sistemas de participación

El Sistema de Gestión Energético es una ayuda indispensable que en la actualidad permite una gestión eficiente de todos los consumos energéticos del municipio. A pesar de su aparente complejidad no intenta más que coordinar todos los esfuerzos que ya se realizan, de manera independiente y con una comunicación interna casi inexistente, desde la corporación municipal. Sus beneficios casi inmediatos hacen que sea una de las medidas más productivas en la mejoras de la gestión municipal.

o instalación

Tipo de edificio Todas las unidades de consumo

Alcance de la aplicación

Todo el municipio desde un punto de vista global

INTRODUCCIÓN

En este apartado, la guía pretende informar sobre los mecanismos de financiación existentes para ejecutar instalaciones de ahorro, eficiencia energética y energías renovables como las descritas en los apartados anteriores.

Los aquí recogidos pretenden dar una idea general de las posibilidades existentes, por lo que cualquier acción deberá estudiarse detenidamente de acuerdo a la realidad en cada caso.

FINANCIACIÓN DE ACTUACIONES PARA LA ADMINISTRACIÓN PÚBLICA

En el ejercicio de sus competencias, las Entidades Locales gestionan edificios, alumbrados públicos, instalaciones de tratamiento de aguas, de residuos, etc. En definitiva, son responsables de multitud de unidades consumidoras de energía.

Para financiar inversiones que permitan obtener ahorros energéticos (sin renunciar a calidad, seguridad o confort), o bien aprovechar fuentes energéticas renovables, los municipios cuentan con diversos instrumentos de financiación y de incentivo, que básicamente son ayudas directas a la inversión realizada y financiación de actuaciones de forma indirecta (Empresas de Servicios Energéticos...).

A continuación aparece un resumen de las posibilidades de financiación que los municipios tienen a su disposición para realizar las actuaciones de ahorro, eficiencia energética e instalación de energías renovables:

SUBVENCIONES A FONDO PERDIDO

a) Subvenciones de las CCAA en el marco del Programa E4

Las Comunidades Autónomas convocan cada año ayudas de las que los Gobiernos Locales pueden beneficiarse, bien en exclusiva, bien de forma compartida con otros tipos de beneficiarios.

La Agencia de Energía informa a los ayuntamientos de esta convocatoria, que suele cubrir actuaciones en eficiencia energética (Plan Renove de Ventanas, Renovación de fachadas y cubiertas, Mejora del Alumbrado Público...) y de Energías Renovables (Energía Solar, Geotermia, Biomasa...). Los porcentajes de subvención varían dependiendo de la actuación, pero suelen encontrarse entre el 20 y el 40% del coste subvencionable.

Entre los requisitos establecidos por la Junta de Castilla y León está el que la solicitud la realice una empresa colaboradora, que deberá encontrarse en el registro de la Junta, actualizado periódicamente en la página web: www.eren.jcyl.es

b) Programa LIFE+ 2007-2013

El programa LIFE+ es un instrumento financiero de la Unión Europea dedicado, de forma exclusiva, al medio ambiente, para el periodo 2007-2013. Su objetivo general es contribuir a la aplicación, actualización y desarrollo de la política y la legislación comunitaria en materia de medio ambiente, incluida la integración del medio ambiente en otras políticas, con el objeto de contribuir al desarrollo sostenible.

En particular, el programa LIFE+ constituye un apoyo importante a la política energética de la Unión Europea, en tanto que uno de sus objetivos es probar la viabilidad técnica y financiera de tecnologías energéticamente eficientes, bajas en carbono, y basadas en energías renovables.

Puede obtenerse más información en: http://ec.europa.eu/environment/life/

FINANCIACIÓN ESPECÍFICA

a) Programa de ayudas IDAE a la financiación de proyectos estratégicos de inversión en ahorro y eficiencia energética

Se trata de un programa de ayudas del IDAE a proyectos estratégicos de inversión en ahorro y eficiencia energética, que pretende incentivar a las empresas a realizar proyectos plurianuales de ahorro y eficiencia energética.

Las ayudas se dirigen, entre otras, a Empresas de Servicios Energéticos que podrían llevar a cabo actuaciones en corporaciones locales de, al menos, 3 Comunidades Autónomas. Las actuaciones cubren inversiones en sector edificación (rehabilitación de envolvente térmica, renovación de instalaciones térmicas, renovación de iluminación interior, construcción de edificios con calificación energética A o B...); sector Equipamiento (sustitución de equipos con la Mejor Tecnología Disponible, adquisición de Sistemas de Alimentación Ininterrumpida...) Sector Transformación de la Energía (sistemas de cogeneración y microcogeneración, ...). Se puede encontrar más informa-

Se puede encontrar más información en la web: www.idae.es

b) Línea ICO Inversión Sostenible

A esta línea de financiación puede optar cualquier entidad pública que vaya a realizar inversiones sostenibles, entendidas como las que incluyan nuevos procesos de producción, productos, servicios o sistemas de dirección que impliquen una mejora en el uso eficiente de los recursos y/o una reducción de los impactos medioambientales.

Se consideran como tal aquéllas que incluyan nuevos procesos de producción, nuevos productos y/o servicios y/o nuevos sistemas de dirección o negocio que impliquen una mejora en el uso eficiente de los recursos y/o una reducción de los impactos medioambientales. Asimismo, serán financiables aquellas inversiones en bienes usados que impliquen mejoras en el uso eficiente de los recursos o reduzcan el impacto ambiental.

Los sectores en los que se incluyen las medidas que pueden financiarse a través de este programa son Eficiencia Energética, Gestión del agua, Movilidad Sostenible, Energías Renovables, Rehabilitación de viviendas y barrios, Conocimiento e innovación sobre energía, cambio climático o construcción sostenible. A través de esta línea ICO se puede financiar hasta el 100% del proyecto de inversión mediante préstamo o leasing y se puede encontrar información más detallada en la página www.icodirecto.es

c) Empresas de servicios energéticos

Las empresas de Servicios Energéticos (ESE's) se definen formalmente en el Real Decreto-Ley 6/2010 de 9 de abril (artículo 19) de la siguiente manera: "aquella persona física o jurídica que pueda proporcionar servicios energéticos, en la forma definida en el párrafo siguiente, en las instalaciones o locales de un usuario y afronte cierto grado de riesgo económico al hacerlo. Todo ello, siempre que el pago de los servicios prestados se base, ya sea en parte o totalmente, en la obtención de ahorros de energía por introducción de mejoras de la eficiencia energética y en el cumplimiento de los demás requisitos de rendimiento convenidos.

El servicio energético prestado por la empresa de servicios energéticos consistirá en un conjunto de prestaciones incluyendo la realización de inversiones inmateriales, de obras o de suministros necesarios para optimizar la calidad y la reducción de los costes energéticos. Esta

actuación podrá comprender además de la construcción, instalación o transformación de obras, equipos y sistemas, su mantenimiento, actualización o renovación, su explotación o su gestión derivados de la incorporación de tecnologías eficientes. El servicio energético así definido deberá prestarse basándose en un contrato que deberá llevar asociado un ahorro de energía verificable, medible o estimable". De acuerdo con esta definición es conveniente destacar las ideas fundamentales relativas a las ESE's.

- 1 La ESE proporciona servicios energéticos o de mejora de la eficiencia energética en las instalaciones o locales de un usuario y afronta cierto grado de riesgo económico al hacerlo.
- 2 La ESE se encarga de implementar las mejoras y de verificar su correcta aplicación
- 3 La remuneración de la ESE va parcial o totalmente ligada a los ahorros conseguidos así como al cumplimiento de los requisitos de rendimiento requeridos
- 4 La ESE proporciona financiación al cliente, bien directamente a través de un contrato de servicios único (riesgo financiero de la ESCO), o bien a través de financiación del Banco a Cliente (riesgo financiero del Cliente), con mayor o menor grado de garantía por parte de la ESE.
- 5 La ESE puede proporcionar un servicio de gestión integral de las infraestructuras energéticas que incluya además la gestión de las mismas, el mantenimiento y la garantía total.

Con estas premisas, se puede entender el funcionamiento de un contrato con una ESE de acuerdo al gráfico (1) (contrato de ahorros compartidos), en el que aparece la distribución de costes para los distintos periodos del contrato.

Además del contrato de ahorros compartidos, existen otros tipo de contratos de los que habrá que estudiar su idoneidad en cada caso. Estas empresas ofrecen varias ventajas para el usuario, por lo que cada vez más, se están implantando en distintos sectores. Las ventajas más importantes son:

Ventajas técnicas:

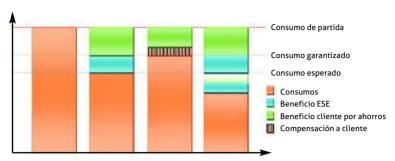

 Se trata de una solución integral global en el ámbito de las infraestructuras y suministros energéticos del cliente. El cliente se cen-

Gráfico 1

tra en su ámbito de negocio dejando la gestión energética a un especialista global

- Con la ejecución del contrato ESE se renuevan las infraestructuras energéticas incorporándose las últimas tecnologías. Al final de la vida la ESE cede activos con vida útil (valor) normalmente a coste cero: ventaja adicional
- El riesgo operacional por la explotación de las instalaciones se traslada íntegramente a la ESE

Ventajas económico-financieras:

- Se elimina la necesidad de inversión en instalaciones con las repercusiones en cuanto a capacidad de endeudamiento para inversiones en la actividad principal.
- Posible reducción inmediata de costes desde el primer momento (ahorros compartidos)

Ventajas ambientales:

 Reducción de emisiones desde el primer momento: imagen y políticas RSC, medioambiental, etc.

Ventajas sociales

 Como sector: fuente de creación de empleo de calidad cualificado

Se puede encontrar más información sobre las ESE's en el documento "Financiación de proyectos a través de ESE's" editado por la Agencia Provincial de la Energía dentro del proyecto e-AIRE.

OTROS

c) Programa Energía Inteligente Europa II 2007-2013 (IEE II)

El programa IEE pretende impulsar acciones que ayuden a lograr los objetivos de la Unión Europea de mejora de la eficiencia energética y mayor uso de energías nuevas y renovables.

El programa IEE considera a las autoridades locales como principal agente "diana". Se les destina regularmente un presupuesto para que desarrollen políticas de energía sostenible en el ámbito local.

Para poder acogerse a esta convocatoria, los proyectos deben tener objetivos claros, de alto impacto y con valor añadido para Europa. El consorcio que acometerá el proyecto debe estar formado al menos por tres organizaciones de tres países diferentes. La duración máxima del proyecto debe ser de tres años, y el presupuesto debe estar entre los 0,5 y 2,5 millones de euros. Las ayudas podrán alcanzar el 75% de los gastos subvencionables, con alguna excepción.

Los proyectos podrán pertenecer a cualquiera de los siguientes campos:

- Eficiencia energética y uso racional de los recursos energéticos (programa SAVE
- Fuentes energéticas nuevas y renovables (programa ALTENER
- Energía en el transporte (programa STEER) para promover la eficiencia energética y el uso de fuentes energéticas nuevas y renovables en el sector del transporte
- Iniciativas integradas que combinen varios de los campos de los programas SAVE, ALTENER y STEER, o relativos a ciertas prioridades de la Unión Europea. Puede tratarse de acciones que integren eficiencia energética y energías renovables en varios sectores económicos, y/o combinar varios instrumentos, herramientas y actores en el mismo proyecto.

Se puede encontrar más información al respecto en la página web: http://ec.europa.eu/energy/intelligent/

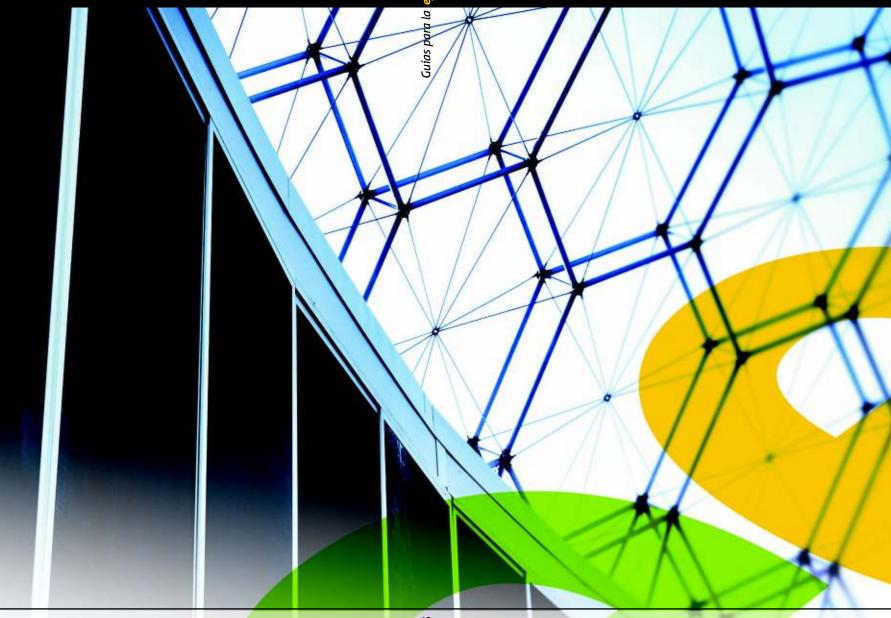
c) Pacto de los alcaldes contra el cambio climático (asesoramiento)

El Pacto de los Alcaldes es un compromiso de las ciudades firmantes para ir más allá de los objetivos de la política energética de la Unión Europea en cuanto a la reducción de emisiones de CO2 mediante una mayor eficiencia energética y la producción y empleo de energía más limpia. El Pacto de los Alcaldes es una iniciativa de la Comisión Europea.

El compromiso formal de los firmantes se traduce en medidas y proyectos concretos. Las ciudades firmantes deben diseñar y poner en práctica planes de acción energéticos sostenibles, de cara a conseguir el objetivo de reducción de CO2 para 2020. Se pueden introducir medidas de eficiencia energética, proyectos de energías renovables y otras actuaciones relacionadas con la energía en varias áreas de actuación de los gobiernos locales y regionales.

Las ciudades que se adhieran deben firmar el compromiso de reducción de emisiones de CO2 en, por lo menos, un 20% para 2020. En el año siguiente a la firma, debe elaborarse el plan de acción energético sostenible, así como el inventario de referencia de las emisiones como base del plan de acción.

Se puede encontrar más información en la página web: http://www.pactodelosalcaldes.eu/index_es.html


NOTAS

<u> </u>
<u>.</u>
_
<u> </u>

servicios públicos

